Label: DEXAMETHASONE SODIUM PHOSPHATE injection

  • NDC Code(s): 70069-021-01, 70069-021-25
  • Packager: Somerset Therapeutics, LLC
  • Category: HUMAN PRESCRIPTION DRUG LABEL
  • DEA Schedule: None
  • Marketing Status: Abbreviated New Drug Application

Drug Label Information

Updated December 10, 2018

If you are a consumer or patient please visit this version.

  • DESCRIPTION

    Dexamethasone Sodium Phosphate Injection, USP, is a water-soluble inorganic ester of dexamethasone which produces a rapid response even when injected intramuscularly. Dexamethasone Sodium Phosphate, USP chemically is Pregna-1,4-diene-3,20-dione, 9-fluoro- 11,17-dihydroxy-16-methyl-21-(phosphonooxy)-, disodium salt, (11ß, 16α).

    It occurs as a white to practically white powder, is hygroscopic, is soluble in water and its solutions have a pH between 7.5 and 9.5.

    It has the following structural formula:

    Molecular Structure

    Each mL of Dexamethasone Sodium Phosphate Injection, USP (Preservative Free) contains dexamethasone sodium phosphate, USP equivalent to 10 mg dexamethasone phosphate; 24.75 mg, sodium citrate, dihydrate; and Water for Injection, q.s. pH adjusted with citric acid monohydrate or sodium hydroxide, if necessary. pH: 7.0 to 8.5.

  • CLINICAL PHARMACOLOGY

    Dexamethasone sodium phosphate injection has a rapid onset but short duration of action when compared with less soluble preparations. Because of this, it is suitable for the treatment of acute disorders responsive to adrenocortical steroid therapy.

    Naturally occurring glucocorticoids (hydrocortisone and cortisone), which also have salt-retaining properties, are used as replacement therapy in adrenocortical deficiency states. Their synthetic analogs, including dexamethasone, are primarily used for their potent anti-inflammatory effects in disorders of many organ systems.

    Glucocorticoids cause profound and varied metabolic effects. In addition, they modify the body's immune responses to diverse stimuli.

    At equipotent anti-inflammatory doses, dexamethasone almost completely lacks the sodium-retaining property of hydrocortisone and closely related derivatives of hydrocortisone.

  • INDICATIONS AND USAGE

    By intravenous or intramuscular injection when oral therapy is not feasible:

    1. Endocrine Disorders

    Primary or secondary adrenocortical insufficiency (hydrocortisone or cortisone is the drug of choice; synthetic analogs may be used in conjunction with mineralocorticoids where applicable; in infancy, mineralocorticoid supplementation is of particular importance).

    Acute adrenocortical insufficiency (hydrocortisone or cortisone is the drug of choice; mineralocorticoid supplementation may be necessary, particularly when synthetic analogs are used).

    Preoperatively, and in the event of serious trauma or   illness, in patients with known adrenal insufficiency or when adrenocortical reserve is doubtful.

    Shock unresponsive to conventional therapy if adrenocortical insufficiency exists or is suspected.

     Congenital adrenal hyperplasia

     Nonsuppurative thyroiditis

     Hypercalcemia associated with cancer

    2. Rheumatic Disorders

    As adjunctive therapy for short-term administration (to tide the patient over an acute episode  or exacerbation) in:

    Post-traumatic osteoarthritis

    Synovitis of osteoarthritis

    Rheumatoid arthritis, including juvenile rheumatoid arthritis (selected cases may require low-dose maintenance therapy).

    Acute and subacute bursitis

    Epicondylitis

    Acute nonspecific tenosynovitis

    Acute gouty arthritis

    Psoriatic arthritis

    Ankylosing spondylitis

    3. Collagen Diseases

    During an exacerbation or as maintenance therapy in selected cases of:

    Systemic lupus erythematosus

    Acute rheumatic carditis

    4. Dermatologic Diseases 

    Pemphigus

    Severe erythema multiforme (Stevens-Johnson syndrome)

    Exfoliative dermatitis

    Bullous dermatitis herpetiformis

    Severe seborrheic dermatitis

    Severe psoriasis

    Mycosis fungoides

    5. Allergic States

    Control of severe or incapacitating allergic conditions intractable to adequate trials of conventional treatment in:

    Bronchial asthma

    Contact dermatitis

    Atopic dermatitis

    Serum sickness

    Seasonal or perennial allergic rhinitis

    Drug hypersensitivity reactions

    Urticarial transfusion reactions

    Acute noninfectious laryngeal edema (epinephrine is the drug of first choice).

    6. Ophthalmic Diseases

    Severe acute and chronic allergic and inflammatory processes involving the eye, such as:

    Herpes zoster ophthalmicus

    Iritis, iridocyclitis

    Chorioretinitis

    Diffuse posterior uveitis and choroiditis

    Optic neuritis

    Sympathetic ophthalmia

    Anterior segment inflammation

    Allergic conjunctivitis

    Keratitis

    Allergic corneal marginal ulcers

    7. Gastrointestinal Diseases

    To tide the patient over a critical period of the disease in:

    Ulcerative colitis (systemic therapy) 

    Regional enteritis (systemic therapy)

    8. Respiratory Diseases 

    Symptomatic sarcoidosis 

    Berylliosis

    Fulminating or disseminated pulmonary tuberculosis when used concurrently with appropriate antituberculous chemotherapy.

    Loeffler's syndrome not manageable by other means.

    Aspiration pneumonitis

    9. Hematologic Disorders

    Acquired (autoimmune) hemolytic anemia. 

    Idiopathic thrombocytopenic purpura in adults (IV only; IM administration is contraindicated). 

    Secondary thrombocytopenia in adults 

    Erythroblastopenia (RBC anemia) 

    Congenital (erythroid) hypoplastic anemia

    10. Neoplastic Diseases

    For palliative management of: 

    Leukemias and lymphomas in adults

    Acute leukemia of childhood

    11. Edematous States

    To induce diuresis or remission of proteinuria in the nephrotic syndrome, without uremia, of f the idiopathic type or that due to lupus erythematosus.

    12. Miscellaneous

    Tuberculous meningitis with subarachnoid block or impending block when used concurrently with appropriate antituberculous chemotherapy.

    Trichinosis with neurologic or myocardial involvement.

    13 Diagnostic testing of adrenocortical hyperfunction.

    14 Cerebral Edema associated with primary or metastatic brain tumor, craniotomy, or head injury. 

    Use in cerebral edema is not a substitute for careful neurosurgical evaluation and definitive 

    management such as neurosurgery or other specific therapy.

  • CONTRAINDICATIONS

    Systemic fungal infections (see WARNINGS regarding amphotericin B).

    Hypersensitivity to any component of this product (see WARNINGS).

  • WARNINGS

    Serious Neurologic Adverse Reactions with Epidural Administration

    Serious neurologic events, some resulting in death, have been reported with epidural injection of corticosteroids. Specific events reported include, but are not limited to, spinal cord infarction, paraplegia, quadriplegia, cortical blindness, and stroke. These serious neurologic events have been reported with and without use of fluoroscopy. The safety and effectiveness of epidural administration of corticosteroids has not been established, and corticosteroids are not approved for this use.

    General

    Because rare instances of anaphylactoid reactions have occurred in patients receiving parenteral corticosteroid therapy, appropriate precautionary measures should be taken prior to administration, especially when the patient has a history of allergy to any drug. Anaphylactoid and hypersensitivity reactions have been reported for dexamethasone sodium phosphate injection (see ADVERSE REACTIONS).

    Corticosteroids may exacerbate systemic fungal infections and, therefore, should not be used in the presence of such infections unless they are needed to control drug reactions due to amphotericin B. Moreover, there have been cases reported in which concomitant use of amphotericin B and hydrocortisone was followed by cardiac enlargement and congestive failure.

    In patients on corticosteroid therapy subjected to any unusual stress, increased dosage of rapidly acting corticosteroids before, during, and after the stressful situation is indicated.

    Drug-induced secondary adrenocortical insufficiency may result from too rapid withdrawal of corticosteroids and may be minimized by gradual reduction of dosage. This type of relative insufficiency may persist for months after discontinuation of therapy; therefore, in any situation of stress occurring during that period, hormone therapy should be reinstituted. If the patient is receiving steroids already, dosage may have to be increased. Since mineralocorticoid secretion may be impaired, salt and/or a mineralocorticoid should be administered concurrently.

    Corticosteroids may mask some signs of infection, and new infections may appear during their use. There may be decreased resistance and inability to localize infection when corticosteroids are used. Moreover, corticosteroids may affect the nitroblue tetrazolium test for bacterial infection and produce false negative results.

    In cerebral malaria, a double-blind trial has shown that the use of corticosteroids is associated with prolongation of coma and a higher incidence of pneumonia and gastrointestinal bleeding.

    Corticosteroids may activate latent amebiasis. Therefore, it is recommended that latent or active amebiasis be ruled out before initiating corticosteroid therapy in any patient who has spent time in the tropics or in any patient with unexplained diarrhea.

    Prolonged use of corticosteroids may produce posterior subcapsular cataracts, glaucoma with possible damage to the optic nerves, and may enhance the establishment of secondary ocular infections due to fungi or viruses.

    Average and large doses of cortisone or hydrocortisone can cause elevation of blood pressure, salt and water retention, and increased excretion of potassium. These effects are less likely to occur with the synthetic derivatives except when used in large doses. Dietary salt restriction and potassium supplementation may be necessary. All corticosteroids increase calcium excretion.

    Administration of live virus vaccines, including smallpox, is contraindicated in individuals receiving immunosuppressive doses of corticosteroids. If inactivated viral or bacterial vaccines are administered to individuals receiving immunosuppressive doses of corticosteroids, the expected serum antibody response may not be obtained. However, immunization procedures may be undertaken in patients who are receiving corticosteroids as replacement therapy, e.g., for Addison's disease.

    Patients who are on drugs which suppress the immune system are more susceptible to infections than healthy individuals. Chickenpox and measles, for example, can have a more serious or even fatal course in non-immune children or adults on corticosteroids. In such children or adults who have not had these diseases, particular care should be taken to avoid exposure. The risk of developing a disseminated infection varies among individuals and can be related to the dose, route and duration of corticosteroid administration as well as to the underlying disease. If exposed to chickenpox, prophylaxis with varicella zoster immune globulin (VZIG) may be indicated. If chickenpox develops, treatment with antiviral agents may be considered. If exposed to measles, prophylaxis with immune globulin (IG) may be indicated. (See the respective package inserts for VZIG and IG for complete prescribing information).

    The use of dexamethasone sodium phosphate injection in active tuberculosis should be restricted to those cases of fulminating or disseminated tuberculosis in which the corticosteroid is used for the management of the disease in conjunction with an appropriate antituberculous regimen.

    If corticosteroids are indicated in patients with latent tuberculosis or tuberculin reactivity, close observation is necessary as reactivation of the disease may occur. During prolonged corticosteroid therapy, these patients should receive chemoprophylaxis.

    Literature reports suggest an apparent association between use of corticosteroids and left ventricular free wall rupture after a recent myocardial infarction; therefore, therapy with corticosteroids should be used with great caution in these patients.

    Usage in Pregnancy

    Since adequate human reproduction studies have not been done with corticosteroids, use of these drugs in pregnancy or in women of childbearing potential requires that the anticipated benefits be weighed against the possible hazards to the mother and embryo or fetus. Infants born of mothers who have received substantial doses of corticosteroids during pregnancy should be carefully observed for signs of hypoadrenalism.

    Corticosteroids appear in breast milk and could suppress growth, interfere with endogenous corticosteroid production, or cause other unwanted effects. Mothers taking pharmacologic doses of corticosteroids should be advised not to nurse.

  • PRECAUTIONS

    This product, like many other steroid formulations, is sensitive to heat. Therefore, it should not be autoclaved when it is desirable to sterilize the exterior of the vial.

    Following prolonged therapy, withdrawal of corticosteroids may result in symptoms of the corticosteroid withdrawal syndrome including fever, myalgia, arthralgia, and malaise. This may occur in patients even without evidence of adrenal insufficiency.

    There is an enhanced effect of corticosteroids in patients with hypothyroidism and in those with cirrhosis.

    Corticosteroids should be used cautiously in patients with ocular herpes simplex for fear of corneal perforation.

    The lowest possible dose of corticosteroid should be used to control the condition under treatment, and when reduction in dosage is possible, the reduction must be gradual.

    Psychic derangements may appear when corticosteroids are used, ranging from euphoria, insomnia, mood swings, personality changes, and severe depression to frank psychotic manifestations. Also, existing emotional instability or psychotic tendencies may be aggravated by corticosteroids.

    Aspirin should be used within caution in conjunction with corticosteroids in hypoprothrombinemia.

    Steroids should be used with caution in nonspecific ulcerative colitis, if there is a probability of impending perforation, abscess, or other pyogenic infection, also in diverticulitis, fresh intestinal anastomoses, active or latent peptic ulcer, renal insufficiency, hypertension, osteoporosis, and myasthenia gravis. Signs of peritoneal irritation following gastrointestinal perforation in patients receiving large doses of corticosteroids may be minimal or absent. Fat embolism has been reported as a possible complication of hypercortisonism.

    When large doses are given, some authorities advise that antacids be administered between meals to help prevent peptic ulcer.

    Steroids may increase or decrease motility and number of spermatozoa in some patients.

    Phenytoin, phenobarbital, ephedrine, and rifampin may enhance the metabolic clearance of corticosteroids resulting in decreased blood levels and lessened physiologic activity, thus requiring adjustment in corticosteroid dosage. These interactions may interfere with dexamethasone suppression tests which should be interpreted with caution during administration of these drugs.

    False negative results in the dexamethasone suppression test (DST) in patients being treated with indomethacin have been reported. Thus, results of the DST should be interpreted with caution in these patients.

    The prothrombin time should be checked frequently in patients who are receiving corticosteroids and coumarin anticoagulants at the same time because of reports that corticosteroids have altered the response to these anticoagulants. Studies have shown that the usual effect produced by adding corticosteroids is inhibition of response to coumarins, although there have been some conflicting reports of potentiation not substantiated by studies.

    When corticosteroids are administered concomitantly with potassium-depleting diuretics, patients should be observed closely for development of hypokalemia.

    The slower rate of absorption by intramuscular administration should be recognized.

    Information for Patients

    Susceptible patients who are on immunosuppressant doses of corticosteroids should be warned to avoid exposure to chickenpox or measles. Patients should also be advised that if they are exposed, medical advice should be sought without delay.

    Pediatric Use

    Growth and development of infants and children patients on prolonged corticosteroid therapy should be carefully followed.

  • ADVERSE REACTIONS

    Fluid and electrolyte disturbances:

           Sodium retention

           Fluid retention

           Congestive heart failure in susceptible patients

           Potassium loss

           Hypokalemic alkalosis

           Hypertension

    Musculoskeletal:

           Muscle weakness

           Steroid myopathy

           Loss of muscle mass

           Osteoporosis

           Vertebral compression fractures

           Aseptic necrosis of femoral and humeral heads

           Tendon rupture

           Pathologic fracture of long bones

    Gastrointestinal:

           Peptic ulcer with possible subsequent perforation and hemorrhage

           Perforation of the small and large bowel; particularly in patients with inflammatory bowel disease

           Pancreatitis

           Abdominal distention

           Ulcerative esophagitis

    Dermatologic:

           Impaired wound healing

           Thin fragile skin

           Petechiae and ecchymoses

           Erythema

           Increased sweating

           May suppress reactions to skin tests

           Burning or tingling, especially in the perineal area (after IV injection)

           Other cutaneous reactions, such as allergic dermatitis, urticaria, angioneurotic edema

    Neurologic:

           Convulsions

           Increased intracranial pressure with papilledema (pseudotumor cerebri) usually after treatment

           Vertigo

           Headache

           Psychic disturbances

    Endocrine:

           Menstrual irregularities

           Development of cushingoid state

           Suppression of growth in pediatric patients

           Secondary adrenocortical and pituitary unresponsiveness, particularly in times of stress, as in trauma, surgery, or illness

           Decreased carbohydrate tolerance

           Manifestations of latent diabetes mellitus

           Increased requirements for insulin or oral hypoglycemic agents in diabetics

           Hirsutism

    Ophthalmic:

           Posterior  subcapsular  cataracts

           Increased intraocular pressure

           Glaucoma

           Exophthalmos

           Retinopathy of prematurity

    Metabolic:

           Negative nitrogen balance due to protein catabolism

    Cardiovascular:

           Myocardial rupture following recent myocardial infarction (see WARNINGS)

           Hypertrophic cardiomyopathy in low birth weight infants

    Other:

           Anaphylactoid or hypersensitivity reactions

           Thromboembolism

           Weight gain

           Increased appetite

           Nausea

           Malaise

           Hiccups

    The following additional adverse reactions are related to parenteral corticosteroid therapy:

           Hyperpigmentation or hypopigmentation 

           Subcutaneous and cutaneous atrophy

           Sterile abscess 

              Charcot-like arthropathy

  • OVERDOSAGE

    Reports of acute toxicity and/or death following overdosage of glucocorticoids are rare. In the event of overdosage, no specific antidote is available; treatment is supportive and symptomatic.

    The oral LD50 of dexamethasone in female mice was 6.5 g/kg. The intravenous LD50 of dexamethasone sodium phosphate in female mice was 794 mg/kg.

  • DOSAGE AND ADMINISTRATION

    Dexamethasone sodium phosphate injection, 10 mg/mL– For intravenous and intramuscular injection only.

    Dexamethasone sodium phosphate injection can be given directly from the vial, or it can be added to Sodium Chloride Injection or Dextrose Injection and administered by intravenous drip.

    Solutions used for intravenous administration or further dilution of this product should be preservative free when used in the neonate, especially the premature infant.

    When it is mixed with an infusion solution, sterile precautions should be observed. Since infusion solutions generally do not contain preservatives, mixtures should be used within 24 hours.

    DOSAGE REQUIREMENTS ARE VARIABLE AND MUST BE INDIVIDUALIZED ON THE BASIS OF THE DISEASE AND THE RESPONSE OF THE PATIENT.

    Intravenous and Intramuscular Injection

    The initial dosage of dexamethasone sodium phosphate injection varies from 0.5 to 9 mg a day depending on the disease being treated. In less severe diseases doses lower than 0.5 mg may suffice, while in severe diseases doses higher than 9 mg may be required.

    The initial dosage should be maintained or adjusted until the patient's response is satisfactory. If a satisfactory clinical response does not occur after a reasonable period of time, discontinue dexamethasone sodium phosphate injection and transfer the patient to other therapy.

    After a favorable initial response, the proper maintenance dosage should be determined by decreasing the initial dosage in small amounts to the lowest dosage that maintains an adequate clinical response.

    Patients should be observed closely for signs that might require dosage adjustment, including changes in clinical status resulting from remissions or exacerbations of the disease, individual drug responsiveness, and the effect of stress (e.g., surgery, infection, trauma). During stress it may be necessary to increase dosage temporarily.

    If the drug is to be stopped after more than a few days of treatment, it usually should be withdrawn gradually.

    When the intravenous route of administration is used, dosage usually should be the same as the oral dosage. In certain overwhelming, acute, life- threatening situations, however, administration in dosages exceeding the usual dosages may be justified and may be in multiples of the oral dosages. The slower rate of absorption by intramuscular administration should be recognized.

    Shock

    There is a tendency in current medical practice to use high (pharmacologic) doses of corticosteroids for the treatment of unresponsive shock. The following dosages of dexamethasone sodium phosphate injection have been suggested by various authors:

    Author             Dosage

    Cavanagh1        3 mg/kg of body weight per 24 hours by constant intravenous infusion after an              

                             initial intravenous injection of 20 mg

    Dietzman2        2 to 6 mg/kg of body weight as a single intravenous injection

     Frank3             40 mg initially followed by repeat intravenous injection every 4 to 6 hours while       

                             shock persists

      Oaks4             40 mg initially followed by repeat intravenous injection every 2 to 6 hours while 

                             shock persists

      Schumer5       1 mg/kg of body weight as a single intravenous Injection

    Administration of high dose corticosteroid therapy should be continued only until the patient's condition has stabilized and usually not longer than 48 to 72 hours.

    Although adverse reactions associated with high dose, short-term corticosteroid therapy are uncommon, peptic ulceration may occur.

    Cerebral Edema

    Dexamethasone sodium phosphate injection is generally administered initially in a dosage of 10 mg intravenously followed by four mg every six hours intramuscularly until the symptoms of cerebral edema subside. Response is usually noted within 12 to 24 hours and dosage may be reduced after two to four days and gradually discontinued over a period of five to seven days. For palliative management of patients with recurrent or inoperable brain tumors, maintenance therapy with 2 mg two or three times a day may be effective.

    Acute Allergic Disorders

    In acute, self-limited allergic disorders or acute exacerbations of chronic allergic disorders, the following dosage schedule combining parenteral and oral therapy is suggested:

    Dexamethasone sodium phosphate injection, first day, 4 or 8 mg intramuscularly.

    Dexamethasone tablets, 0.75 mg: second and third days, 4 tablets in two divided doses each day; fourth day, 2 tablets in two divided doses; fifth and sixth days, 1 tablet each day; seventh day, no treatment; eighth day, follow-up visit.

    This schedule is designed to ensure adequate therapy during acute episodes, while minimizing the risk of overdosage in chronic cases.

    Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever the solution and container permit.

  • HOW SUPPLIED

    Dexamethasone Sodium Phosphate Injection, USP (Preservative Free) equivalent to 10 mg dexamethasone phosphate, is supplied in a single dose vial as follows:

    NDC   No             Strength         Vial Size

    70069-021-25       10 mg/mL        1 mL Vial Packaged in twenty-fives.

    The vial stopper closure is not made with natural rubber latex.

    Storage

    Store at 20° to 25°C (68° to 77°F) [see USP Controlled Room Temperature]. Sensitive to heat.

    Do not autoclave.

    Protect from freezing.

    Protect from light.

    Single dose vials –Store in container until time of use. Discard unused portion. 

  • REFERENCES

    1. Cavanagh, D.; Singh, K.B.: Endotoxin shock in pregnancy and abortion, in: "Corticosteroids in the Treatment of Shock", Schumer, W.; Nyhus, L.M., Editors, Urbana, University of Illinois Press, 1970, pp. 86-96.
    2. Dietzman, R.H.; Ersek, R.A.; Bloch, J.M.; Lilleheir, R.C.: High-output, low-resistance gram-negative septic shock in man, Angiology 20: 691-700, Dec. 1969.
    3. Frank, E.: Clinical observations in shock and management (in: Shields, T.F., ed.: Symposium on current concepts and management of shock), J. Maine Med. Ass. 59: 195-200, Oct. 1968.
    4. Oaks, W. W.; Cohen, H.E.: Endotoxin shock in the geriatric patient, Geriat. 22: 120-130, Mar. 1967.
    5. Schumer, W.; Nyhus, L.M.: Corticosteroid effect on biochemical parameters of human oligemic shock, Arch. Surg. 100: 405-408, Apr. 1970.

    For Product Inquiry call 1-800-417-9175.

    Manufactured by:                    Manufactured for: 

    Wintac Limited                          Somerset Therapeutics, LLC

    Bangalore-562 123                     Somerset, NJ 08873

    India.                                          ST-DEX21/P/01

    Code No.: KR/DRUGS/KTK/28/289/97

    Revised: 06/2018

  • PACKAGE LABEL.PRINCIPAL DISPLAY PANEL

    Container Label (Vial)

    Container Label

    container-label

    Carton Label

    Carton Label

    carton-label

  • INGREDIENTS AND APPEARANCE
    DEXAMETHASONE SODIUM PHOSPHATE 
    dexamethasone sodium phosphate injection
    Product Information
    Product TypeHUMAN PRESCRIPTION DRUGItem Code (Source)NDC:70069-021
    Route of AdministrationINTRAMUSCULAR, INTRAVENOUS
    Active Ingredient/Active Moiety
    Ingredient NameBasis of StrengthStrength
    DEXAMETHASONE SODIUM PHOSPHATE (UNII: AI9376Y64P) (DEXAMETHASONE - UNII:7S5I7G3JQL) DEXAMETHASONE PHOSPHATE10 mg  in 1 mL
    Inactive Ingredients
    Ingredient NameStrength
    TRISODIUM CITRATE DIHYDRATE (UNII: B22547B95K) 24.75 mg  in 1 mL
    CITRIC ACID MONOHYDRATE (UNII: 2968PHW8QP)  
    SODIUM HYDROXIDE (UNII: 55X04QC32I)  
    WATER (UNII: 059QF0KO0R)  
    Product Characteristics
    ColorWHITE (Clear, colorless solution) Score    
    ShapeSize
    FlavorImprint Code
    Contains    
    Packaging
    #Item CodePackage DescriptionMarketing Start DateMarketing End Date
    1NDC:70069-021-2525 in 1 CARTON04/24/2018
    1NDC:70069-021-011 mL in 1 VIAL; Type 0: Not a Combination Product
    Marketing Information
    Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
    ANDAANDA20744204/24/2018
    Labeler - Somerset Therapeutics, LLC (079947873)
    Registrant - Somerset Therapeutics, LLC (079947873)
    Establishment
    NameAddressID/FEIBusiness Operations
    Wintac Limited677236695ANALYSIS(70069-021) , LABEL(70069-021) , PACK(70069-021) , MANUFACTURE(70069-021)