Label: FELODIPINE tablet, film coated


Drug Label Information

Updated January 9, 2024

If you are a healthcare professional or from the pharmaceutical industry please visit this version.


    Felodipine is a calcium antagonist (calcium channel blocker). Felodipine is a
    dihydropyridine derivative that is chemically described as ± ethyl methyl
    Its molecular formula is C18H19Cl12NO4 and its structural formula is:

    image description

    Felodipine, USP is a light yellow to yellow crystalline powder with a molecular
    weight of 384.26. It is insoluble in water and is freely soluble in acetone and
    in methanol; very slightly soluble in heptane. Felodipine is a racemic mixture.
    Felodipine extended-release tablets, USP provide extended release of felodipine.
    They are available as tablets containing 2.5 mg, 5 mg or 10 mg of felodipine,
    USP for oral administration. Inactive ingredients are: lactose monohydrate,
    hydroxypropyl cellulose, silicon dioxide colloidal, hypromellose, magnesium
    stearate, calcium phosphate dibasic, butylated hydroxyanisole, polyethylene
    glycol, titanuium dioxide. In addition, the 5 mg and the 10 mg tablet strength
    contain FD&C Red No. 40 powder, FD&C Yellow No. 6 Aluminum Lake.
    Meets USP Dissolution Test 3.


    Mechanism of Action

    Felodipine is a member of the dihydropyridine class of calcium channel
    antagonists (calcium channel blockers). It reversibly competes with nitrendipine
    and/or other calcium channel blockers for dihydropyridine binding sites,
    blocks voltage-dependent Ca++ currents in vascular smooth muscle and
    cultured rabbit atrial cells, and blocks potassium-induced contracture of the
    rat portal vein.
    In vitro studies show that the effects of felodipine on contractile processes
    are selective, with greater effects on vascular smooth muscle than cardiac
    muscle. Negative inotropic effects can be detected in vitro, but such effects
    have not been seen in intact animals.
    The effect of felodipine on blood pressure is principally a consequence of a
    dose related decrease of peripheral vascular resistance in man, with a modest
    reflex increase in heart rate (see Cardiovascular Effects). With the exception
    of a mild diuretic effect seen in several animal species and man, the effects
    of felodipine are accounted for by its effects on peripheral vascular resistance.

    Pharmacokinetics and Metabolism

    Following oral administration, felodipine is almost completely absorbed and
    undergoes extensive first-pass metabolism. The systemic bioavailability of
    felodipine extended-release tablets is approximately 20%. Mean peak
    concentrations following the administration of felodipine extended-release
    tablets are reached in 2.5 to 5 hours. Both peak plasma concentration and the
    area under the plasma concentration time curve (AUC) increase linearly with
    doses up to 20 mg. Felodipine is greater than 99% bound to plasma proteins.
    Following intravenous administration, the plasma concentration of felodipine
    declined triexponentially with mean disposition half-lives of 4.8 minutes,
    1.5 hours, and 9.1 hours. The mean contributions of the three individual
    phases to the overall AUC were 15%, 40% and 45%, respectively, in the order
    of increasing t1/2.
    Following oral administration of the immediate-release formulation, the plasma
    level of felodipine also declined polyexponentially with a mean terminal t1/2 of
    11 to 16 hours. The mean peak and trough steady-state plasma concentrations
    achieved after 10 mg of the immediate-release formulation given once a day
    to normal volunteers, were 20 and 0.5 nmol/L, respectively. The trough plasma
    concentration of felodipine in most individuals was substantially below the
    concentration needed to effect a half-maximal decline in blood pressure (EC50)
    [4 to 6 nmol/L for felodipine], thus precluding once a day dosing with the
    immediate-release formulation.
    Following administration of a 10 mg dose of felodipine, the extended-release
    formulation, to young, healthy volunteers, mean peak and trough steady-state
    plasma concentrations of felodipine were 7 and 2 nmol/L, respectively.
    Corresponding values in hypertensive patients (mean age 64) after a 20 mg
    dose of felodipine extended-release tablets were 23 and 7 nmol/L. Since the
    EC50 for felodipine is 4 to 6 nmol/L, a 5 mg to 10 mg dose of felodipine
    extended-release tablets in some patients, and a 20 mg dose in others, would
    be expected to provide an antihypertensive effect that persists for 24 hours
    (see Cardiovascular Effects and DOSAGE AND ADMINISTRATION).
    The systemic plasma clearance of felodipine in young healthy subjects is
    about 0.8 L/min, and the apparent volume of distribution is about 10 L/kg.
    Following an oral or intravenous dose of 14C-labeled felodipine in man, about
    70% of the dose of radioactivity was recovered in urine and 10% in the feces.
    A negligible amount of intact felodipine is recovered in the urine and feces
    (< 0.5%). Six metabolites, which account for 23% of the oral dose, have been
    identified; none has significant vasodilating activity.
    Following administration of felodipine extended-release tablets to hypertensive
    patients, mean peak plasma concentrations at steady-state are about 20%
    higher than after a single dose. Blood pressure response is correlated with
    plasma concentrations of felodipine.
    The bioavailability of felodipine extended-release tablets is influenced by the
    presence of food. When administered either with a high fat or carbohydrate
    diet, Cmax is increased by approximately 60%; AUC is unchanged. When
    felodipine extended-release tablets were administered after a light meal
    (orange juice, toast, and cereal), however, there is no effect on felodipine's
    pharmacokinetics. The bioavailability of felodipine was increased approximately
    2-fold when taken with grapefruit juice. Orange juice does not appear
    to modify the kinetics of felodipine extended-release tablets. A similar finding
    has been seen with other dihydropyridine calcium antagonists, but to a lesser
    extent than that seen with felodipine.

    Geriatric Use

    Plasma concentrations of felodipine, after a single dose and at steady-state,
    increase with age. Mean clearance of felodipine in elderly hypertensives
    (mean age 74) was only 45% of that of young volunteers (mean age 26).
    At steady-state mean AUC for young patients was 39% of that for the elderly.
    Data for intermediate age ranges suggest that the AUCs fall between the
    extremes of the young and the elderly.

    Hepatic Dysfunction

    In patients with hepatic disease, the clearance of felodipine was reduced to
    about 60% of that seen in normal young volunteers.
    Renal impairment does not alter the plasma concentration profile of felodipine;
    although higher concentrations of the metabolites are present in the plasma
    due to decreased urinary excretion, these are inactive.
    Animal studies have demonstrated that felodipine crosses the blood-brain
    barrier and the placenta.

    Cardiovascular Effects

    Following administration of felodipine extended-release tablets, a reduction
    in blood pressure generally occurs within 2 to 5 hours. During chronic
    administration, substantial blood pressure control lasts for 24 hours, with
    trough reductions in diastolic blood pressure approximately 40% to 50% of
    peak reductions. The antihypertensive effect is dose dependent and correlates
    with the plasma concentration of felodipine.
    A reflex increase in heart rate frequently occurs during the first week of
    therapy; this increase attenuates over time. Heart rate increases of 5 to
    10 beats per minute may be seen during chronic dosing. The increase is
    inhibited by beta-blocking agents.
    The P-R interval of the ECG is not affected by felodipine when administered
    alone or in combination with a beta-blocking agent. Felodipine alone or in
    combination with a beta-blocking agent has been shown, in clinical and
    electrophysiologic studies, to have no significant effect on cardiac conduction
    (P-R, P-Q, and H-V intervals).
    In clinical trials in hypertensive patients without clinical evidence of left ventricular
    dysfunction, no symptoms suggestive of a negative inotropic effect were
    noted; however, none would be expected in this population (see PRECAUTIONS).

    Renal/Endocrine Effects

    Renal vascular resistance is decreased by felodipine while glomerular filtration
    rate remains unchanged. Mild diuresis, natriuresis, and kaliuresis have been
    observed during the first week of therapy. No significant effects on serum
    electrolytes were observed during short- and long-term therapy.
    In clinical trials in patients with hypertension, increases in plasma noradrenaline
    levels have been observed.

    Clinical Studies

    Felodipine produces dose related decreases in systolic and diastolic blood
    pressure as demonstrated in six placebo-controlled, dose response studies
    using either immediate-release or extended-release dosage forms. These
    studies enrolled over 800 patients on active treatment, at total daily doses
    ranging from 2.5 mg to 20 mg. In those studies felodipine was administered
    either as monotherapy or was added to beta-blockers. The results of the two
    studies with felodipine extended-release tablets given once daily as monotherapy
    are shown in the table below:

    table 1


    Felodipine extended-release tablets, USP are indicated for the treatment of
    hypertension, to lower blood pressure. Lowering blood pressure lowers the
    risk of fatal and nonfatal cardiovascular events, primarily strokes and myocardial
    infarctions. These benefits have been seen in controlled trials of
    antihypertensive drugs from a wide variety of pharmacologic classes including
    Control of high blood pressure should be part of comprehensive cardiovascular
    risk management, including, as appropriate, lipid control, diabetes management,
    antithrombotic therapy, smoking cessation, exercise and limited sodium intake.
    Many patients will require more than one drug to achieve blood pressure
    goals. For specific advice on goals and management, see published guidelines,
    such as those of the National High Blood Pressure Education Program’s Joint
    National Committee on Prevention, Detection, Evaluation, and Treatment of
    High Blood Pressure (JNC).
    Numerous antihypertensive drugs, from a variety of pharmacologic classes
    and with different mechanisms of action, have been shown in randomized
    controlled trials to reduce cardiovascular morbidity and mortality, and it can be
    concluded that it is blood pressure reduction, and not some other pharmacologic
    property of the drugs, that is largely responsible for those benefits. The largest
    and most consistent cardiovascular outcome benefit has been a reduction in
    the risk of stroke, but reductions in myocardial infarction and cardiovascular
    mortality also have been seen regularly.
    Elevated systolic or diastolic pressure causes increased cardiovascular risk,
    and the absolute risk increase per mmHg is greater at higher blood pressures,
    so that even modest reductions of severe hypertension can provide substantial
    benefit. Relative risk reduction from blood pressure reduction is similar across
    populations with varying absolute risk, so the absolute benefit is greater in
    patients who are at higher risk independent of their hypertension (for example,
    patients with diabetes or hyperlipidemia), and such patients would be expected
    to benefit from more aggressive treatment to a lower blood pressure goal.
    Some antihypertensive drugs have smaller blood pressure effects (as
    monotherapy) in black patients, and many antihypertensive drugs have
    additional approved indications and effects (e.g., on angina, heart failure or
    diabetic kidney disease). These considerations may guide selection of therapy.
    Felodipine extended-release tablets, USP may be administered with other
    antihypertensive agents.


    Felodipine extended-release tablets are contraindicated in patients who are
    hypersensitive to this product.



    Felodipine, like other calcium antagonists, may occasionally precipitate
    significant hypotension and, rarely, syncope. It may lead to reflex tachycardia
    which in susceptible individuals may precipitate angina pectoris. (See
    Heart Failure
    Although acute hemodynamic studies in a small number of patients with
    NYHA Class II or III heart failure treated with felodipine have not demonstrated
    negative inotropic effects, safety in patients with heart failure has not
    been established. Caution, therefore, should be exercised when using
    ffelodipine extended-release tablets in patients with heart failure or compromised
    ventricular function, particularly in combination with a beta-blocker.
    Patients with Impaired Liver Function
    Patients with impaired liver function may have elevated plasma concentrations
    of felodipine and may respond to lower doses of felodipine extended-release
    tablets; therefore, a starting dose of 2.5 mg once a day is recommended.
    These patients should have their blood pressure monitored closely during
    dosage adjustment of felodipine extended-release tablets. (See CLINICAL
    Peripheral Edema
    Peripheral edema, generally mild and not associated with generalized fluid
    retention, was the most common adverse event in the clinical trials. The
    incidence of peripheral edema was both dose and age dependent. Frequency
    of peripheral edema ranged from about 10% in patients under 50 years of
    age taking 5 mg daily to about 30% in those over 60 years of age taking 20
    mg daily. This adverse effect generally occurs within 2 to 3 weeks of the
    initiation of treatment.

    Information for Patients

    Patients should be instructed to take felodipine extended-release tablets
    whole and not to crush or chew the tablets. They should be told that mild
    gingival hyperplasia (gum swelling) has been reported. Good dental hygiene
    decreases its incidence and severity.
    NOTE: As with many other drugs, certain advice to patients being treated
    with felodipine extended-release tablets is warranted. This information is
    intended to aid in the safe and effective use of this medication. It is not a
    disclosure of all possible adverse or intended effects.

    Drug Interactions

    CYP3A4 Inhibitors
    Felodipine is metabolized by CYP3A4. Coadministration of CYP3A4 inhibitors
    (e.g., ketoconazole, itraconazole, erythromycin, grapefruit juice, cimetidine)
    with felodipine may lead to several-fold increases in the plasma levels of
    felodipine, either due to an increase in bioavailability or due to a decrease in
    metabolism. These increases in concentration may lead to increased effects,
    (lower blood pressure and increased heart rate). These effects have been
    observed with coadministration of itraconazole (a potent CYP3A4 inhibitor).
    Caution should be used when CYP3A4 inhibitors are coadministered with
    felodipine. A conservative approach to dosing felodipine should be taken. The
    following specific interactions have been reported:
    Coadministration of another extended-release formulation of felodipine with
    itraconazole resulted in approximately 8-fold increase in the AUC, more
    than 6-fold increase in the Cmax, and 2-fold prolongation in the half-life of
    Coadministration of felodipine extended-release tablets with erythromycin
    resulted in approximately 2.5-fold increase in the AUC and Cmax, and about
    2-fold prolongation in the half-life of felodipine.
    Grapefruit Juice
    Coadministration of felodipine extended-release tablets with grapefruit
    juice resulted in more than 2-fold increase in the AUC and Cmax, but no
    prolongation in the half-life of felodipine.
    Coadministration of felodipine with cimetidine (a non-specific CYP-450 inhibitor)
    resulted in an increase of approximately 50% in the AUC and the Cmax, of
    Beta-Blocking Agents
    A pharmacokinetic study of felodipine in conjunction with metoprolol demonstrated
    no significant effects on the pharmacokinetics of felodipine. The AUC and
    Cmax of metoprolol, however, were increased approximately 31 and 38%,
    respectively. In controlled clinical trials, however, beta-blockers including
    metoprolol were concurrently administered with felodipine and were well
    When given concomitantly with felodipine extended-release tablets the
    pharmacokinetics of digoxin in patients with heart failure were not significantly
    In a pharmacokinetic study, maximum plasma concentrations of felodipine
    were considerably lower in epileptic patients on long-term anticonvulsant
    therapy (e.g. phenytoin, carbamazepine, or phenobarbital) than in healthy
    volunteers. In such patients, the mean area under the felodipine plasma
    concentration-time curve was also reduced to approximately 6% of that
    observed in healthy volunteers. Since a clinically significant interaction may
    be anticipated, alternative antihypertensive therapy should be considered in
    these patients.
    Felodipine may increase the blood concentration of tacrolimus. When given
    concomitantly with felodipine, the tacrolimus blood concentration should be
    followed and the tacrolimus dose may need to be adjusted.
    Other Concomitant Therapy
    In healthy subjects there were no clinically significant interactions when
    felodipine was given concomitantly with indomethacin or spironolactone.
    Interaction with Food
    See CLINICAL PHARMACOLOGY: Pharmacokinetics and Metabolism.

    Carcinogenesis, Mutagenesis, Impairment of Fertility

    In a 2 year carcinogenicity study in rats fed felodipine at doses of 7.7, 23.1
    or 69.3 mg/kg/day (up to 61 times** the maximum recommended human dose
    on a mg/m2 basis), a dose related increase in the incidence of benign
    interstitial cell tumors of the testes (Leydig cell tumors) was observed in
    treated male rats. These tumors were not observed in a similar study in mice
    at doses up to 138.6 mg/kg/day (61 times** the maximum recommended
    human dose on a mg/m2 basis). Felodipine, at the doses employed in the 2
    year rat study, has been shown to lower testicular testosterone and to produce
    a corresponding increase in serum luteinizing hormone in rats. The Leydig
    cell tumor development is possibly secondary to these hormonal effects
    which have not been observed in man.
    In this same rat study a dose related increase in the incidence of focal
    squamous cell hyperplasia compared to control was observed in the esophageal
    groove of male and female rats in all dose groups. No other drug-related
    esophageal or gastric pathology was observed in the rats or with chronic
    administration in mice and dogs. The latter species, like man, has no anatomical
    structure comparable to the esophageal groove.
    Felodipine was not carcinogenic when fed to mice at doses up to 138.6 mg/kg/day
    (61 times** the maximum recommended human dose on a mg/m2 basis) for
    periods of up to 80 weeks in males and 99 weeks in females.
    Felodipine did not display any mutagenic activity in vitro in the Ames
    microbial mutagenicity test or in the mouse lymphoma forward mutation
    assay. No clastogenic potential was seen in vivo in the mouse micronucleus
    test at oral doses up to 2500 mg/kg (1,100 times** the maximum recommended
    human dose on a mg/m2 basis) or in vitro in a human lymphocyte chromosome
    aberration assay.
    A fertility study in which male and female rats were administered doses of
    3.8, 9.6 or 26.9 mg/kg/day (up to 24 times** the maximum recommended
    human dose on a mg/m2 basis) showed no significant effect of felodipine on
    reproductive performance.
    **Based on patient weight of 50 kg


    Teratogenic Effects. Pregnancy Category C
    Studies in pregnant rabbits administered doses of 0.46, 1.2, 2.3 and 4.6 mg/kg/day
    (from 0.8 to 8 times** the maximum recommended human dose on a mg/m2
    basis) showed digital anomalies consisting of reduction in size and degree
    of ossification of the terminal phalanges in the fetuses. The frequency and
    severity of the changes appeared dose related and were noted even at the
    lowest dose. These changes have been shown to occur with other members
    of the dihydropyridine class and are possibly a result of compromised uterine
    blood flow. Similar fetal anomalies were not observed in rats given felodipine.
    In a teratology study in cynomolgus monkeys, no reduction in the size of the
    terminal phalanges was observed, but an abnormal position of the distal
    phalanges was noted in about 40% of the fetuses.
    Nonteratogenic Effects
    A prolongation of parturition with difficult labor and an increased frequency
    of fetal and early postnatal deaths were observed in rats administered doses
    of 9.6 mg/kg/day (8 times** the maximum human dose on a mg/m2 basis) and
    **Based on patient weight of 50 kg
    Significant enlargement of the mammary glands, in excess of the normal
    enlargement for pregnant rabbits, was found with doses greater than or equal
    to 1.2 mg/kg/day (2.1 times the maximum human dose on a mg/m2 basis).
    This effect occurred only in pregnant rabbits and regressed during lactation.
    Similar changes in the mammary glands were not observed in rats or
    There are no adequate and well controlled studies in pregnant women. If
    felodipine extended-release tablet is used during pregnancy, or if the
    patient becomes pregnant while taking this drug, she should be apprised
    of the potential hazard to the fetus, possible digital anomalies of the infant,
    and the potential effects of felodipine on labor and delivery and on the
    mammary glands of pregnant females.

    Nursing Mothers

    It is not known whether this drug is secreted in human milk and because of
    the potential for serious adverse reactions from felodipine in the infant, a
    decision should be made whether to discontinue nursing or to discontinue
    the drug, taking into account the importance of the drug to the mother.

    Pediatric Use

    Safety and effectiveness in pediatric patients have not been established.

    Geriatric Use

    Clinical studies of felodipine did not include sufficient numbers of subjects
    aged 65 and over to determine whether they respond differently from younger
    subjects. Other reported clinical experience has not identified differences in
    responses between the elderly and younger patients. Pharmacokinetics,
    however, indicate that the availability of felodipine is increased in older
    patients (see CLINICAL PHARMACOLOGY: Geriatric Use). In general, dose
    selection for an elderly patient should be cautious, usually starting at the low
    end of the dosing range, reflecting the greater frequency of decreased
    hepatic, renal, or cardiac function, and of concomitant disease or other drug


    In controlled studies in the United States and overseas, approximately 3,000
    patients were treated with felodipine as either the extended-release or the
    immediate-release formulation.
    The most common clinical adverse events reported with felodipine extendedrelease
    tablets administered as monotherapy at the recommended dosage
    range of 2.5 mg to 10 mg once a day were peripheral edema and headache.
    Peripheral edema was generally mild, but it was age and dose related and
    resulted in discontinuation of therapy in about 3% of the enrolled patients.
    Discontinuation of therapy due to any clinical adverse event occurred in
    about 6% of the patients receiving felodipine extended-release tablets,

    principally for peripheral edema, headache, or flushing.
    Adverse events that occurred with an incidence of 1.5% or greater at any of
    the recommended doses of 2.5 mg to 10 mg once a day (felodipine extendedrelease
    tablets, N = 861; Placebo, N = 334), without regard to causality, are
    compared to placebo and are listed by dose in the table below. These events are
    reported from controlled clinical trials with patients who were randomized to
    a fixed dose of felodipine extended-release tablets or titrated from an initial
    dose of 2.5 mg or 5 mg once a day. A dose of 20 mg once a day has been
    evaluated in some clinical studies. Although the antihypertensive effect of
    felodipine extended-release tablets is increased at 20 mg once a day,
    there is a disproportionate increase in adverse events, especially those
    associated with vasodilatory effects (see DOSAGE AND ADMINISTRATION).

    table 2

    Adverse events that occurred in 0.5% up to 1.5% of patients who received
    felodipine extended-release tablets in all controlled clinical trials at the
    recommended dosage range of 2.5 mg to 10 mg once a day, and serious
    adverse events that occurred at a lower rate, or events reported during
    marketing experience (those lower rate events are in italics) are listed
    below. These events are listed in order of decreasing severity within each
    category, and the relationship of these events to administration of felodipine
    extended-release tablets is uncertain:
    Body as a Whole: Chest pain, facial edema, flu-like illness
    Cardiovascular: Myocardial infarction, hypotension, syncope, angina pectoris,
    arrhythmia, tachycardia, premature beats
    Digestive: Abdominal pain, diarrhea, vomiting, dry mouth, flatulence, acid
    Endocrine: Gynecomastia
    Hematologic: Anemia
    Metabolic: ALT (SGPT) increased
    Musculoskeletal: Arthralgia, back pain, leg pain, foot pain, muscle cramps,
    myalgia, arm pain, knee pain, hip pain
    Nervous/Psychiatric: Insomnia, depression, anxiety disorders, irritability,
    nervousness, somnolence, decreased libido
    Respiratory: Dyspnea, pharyngitis, bronchitis, influenza, sinusitis, epistaxis,
    respiratory infection
    Skin: Angioedema, contusion, erythema, urticaria, leukocytoclastic vasculitis
    Special Senses: Visual disturbances
    Urogenital: Impotence, urinary frequency, urinary urgency, dysuria, polyuria.
    Gingival Hyperplasia: Gingival hyperplasia, usually mild, occurred in < 0.5%
    of patients in controlled studies. This condition may be avoided or may regress
    with improved dental hygiene. (See PRECAUTIONS: Information for Patients.)
    Clinical Laboratory Test Findings
    Serum Electrolytes
    No significant effects on serum electrolytes were observed during short- and
    long-term therapy (see CLINICAL PHARMACOLOGY: Renal/Endocrine
    Serum Glucose
    No significant effects on fasting serum glucose were observed in patients
    treated with felodipine extended-release tablets in the U.S. controlled study.
    Liver Enzymes
    One of two episodes of elevated serum transaminases decreased once drug
    was discontinued in clinical studies; no follow-up was available for the other


    Oral doses of 240 mg/kg and 264 mg/kg in male and female mice, respectively,
    and 2390 mg/kg and 2250 mg/kg in male and female rats, respectively,
    caused significant lethality.
    In a suicide attempt, one patient took 150 mg felodipine together with 15 tablets
    each of atenolol and spironolactone and 20 tablets of nitrazepam. The patient's
    blood pressure and heart rate were normal on admission to hospital; he
    subsequently recovered without significant sequelae.
    Overdosage might be expected to cause excessive peripheral vasodilation
    with marked hypotension and possibly bradycardia.
    If severe hypotension occurs, symptomatic treatment should be instituted.
    The patient should be placed supine with the legs elevated. The administration
    of intravenous fluids may be useful to treat hypotension due to overdosage
    with calcium antagonists. In case of accompanying bradycardia, atropine
    (0.5 mg to 1 mg) should be administered intravenously. Sympathomimetic
    drugs may also be given if the physician feels they are warranted.
    It has not been established whether felodipine can be removed from the
    circulation by hemodialysis.
    To obtain up-to-date information about the treatment of overdose, consult
    your Regional Poison-Control Center. Telephone numbers of certified poisoncontrol
    centers are listed in the Physicians' Desk Reference (PDR). In managing
    overdose, consider the possibilities of multiple-drug overdoses, drug-drug
    interactions, and unusual drug kinetics in your patient.


    The recommended starting dose is 5 mg once a day. Depending on the patient's
    response, the dosage can be decreased to 2.5 mg or increased to 10 mg
    once a day. These adjustments should occur generally at intervals of not less
    than 2 weeks. The recommended dosage range is 2.5 mg to 10 mg once
    daily. In clinical trials, doses above 10 mg daily showed an increased blood
    pressure response but a large increase in the rate of peripheral edema and
    other vasodilatory adverse events (see ADVERSE REACTIONS). Modification
    of the recommended dosage is usually not required in patients with renal
    Felodipine extended-release tablets should regularly be taken either without
    food or with a light meal (see CLINICAL PHARMACOLOGY, Pharmacokinetics
    and Metabolism). Felodipine extended-release tablets should be swallowed
    whole and not crushed or chewed.

    Geriatric Use

    Patients over 65 years of age are likely to develop higher plasma concentrations
    of felodipine (see CLINICAL PHARMACOLOGY). In general, dose selection
    for an elderly patient should be cautious, usually starting at the low end of the
    dosing range (2.5 mg daily). Elderly patients should have their blood pressure
    closely monitored during any dosage adjustment.

    Patients with Impaired Liver Function

    Patients with impaired liver function may have elevated plasma concentrations
    of felodipine and may respond to lower doses of felodipine extended-release
    tablets; therefore, patients should have their blood pressure monitored closely
    during dosage adjustment of felodipine extended-release tablets (see CLINICAL


    The 10 mg tablets are red film-coated, round, unscored tablets debossed with

    “YSP 051” on one side of the tablets. They are available as follows:

    NDC 63629-2016-1 bottles of 500 tablets

    Store at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.]

    Protect from light.

    Dispense in a tight, light-resistant container as defined in the USP using a
    child-resistant closure.

    Repackaged/Relabeled by:

    Bryant Ranch Prepack, Inc.

    Burbank, CA 91504


    Felodipine ER 10 mg Tablet, #500

    felodipine tablet, film coated
    Product Information
    Product TypeHUMAN PRESCRIPTION DRUGItem Code (Source)NDC:63629-2016(NDC:61442-433)
    Route of AdministrationORAL
    Active Ingredient/Active Moiety
    Ingredient NameBasis of StrengthStrength
    Inactive Ingredients
    Ingredient NameStrength
    HYPROMELLOSE 2208 (100 MPA.S) (UNII: B1QE5P712K)  
    Product Characteristics
    ColorredScoreno score
    FlavorImprint Code YSP;051
    #Item CodePackage DescriptionMarketing Start DateMarketing End Date
    1NDC:63629-2016-1500 in 1 BOTTLE; Type 0: Not a Combination Product10/12/2020
    Marketing Information
    Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
    Labeler - Bryant Ranch Prepack (171714327)
    Registrant - Bryant Ranch Prepack (171714327)
    NameAddressID/FEIBusiness Operations
    Bryant Ranch Prepack171714327REPACK(63629-2016) , RELABEL(63629-2016)