RETROVIR- zidovudine injection, solution
ViiV Healthcare Company
----------
RETROVIR (ZIDOVUDINE) HAS BEEN ASSOCIATED WITH HEMATOLOGIC TOXICITY, INCLUDING NEUTROPENIA AND SEVERE ANEMIA, PARTICULARLY IN PATIENTS WITH ADVANCED HUMAN IMMUNODEFICIENCY VIRUS (HIV) DISEASE (SEE WARNINGS). PROLONGED USE OF RETROVIR HAS BEEN ASSOCIATED WITH SYMPTOMATIC MYOPATHY.
LACTIC ACIDOSIS AND SEVERE HEPATOMEGALY WITH STEATOSIS, INCLUDING FATAL CASES, HAVE BEEN REPORTED WITH THE USE OF NUCLEOSIDE ANALOGUES ALONE OR IN COMBINATION, INCLUDING RETROVIR AND OTHER ANTIRETROVIRALS (SEE WARNINGS).
RETROVIR is the brand name for zidovudine (formerly called azidothymidine [AZT]), a pyrimidine nucleoside analogue active against HIV. RETROVIR IV Infusion is a sterile solution for intravenous infusion only. Each mL contains 10 mg zidovudine in Water for Injection. Hydrochloric acid and/or sodium hydroxide may have been added to adjust the pH to approximately 5.5. RETROVIR IV Infusion contains no preservatives.
The chemical name of zidovudine is 3′-azido-3′-deoxythymidine; it has the following structural formula:
Zidovudine is a white to beige, odorless, crystalline solid with a molecular weight of 267.24 and a solubility of 20.1 mg/mL in water at 25°C. The molecular formula is C10H13N5O4.
Zidovudine is a synthetic nucleoside analogue. Intracellularly, zidovudine is phosphorylated to its active 5′-triphosphate metabolite, zidovudine triphosphate (ZDV-TP). The principal mode of action of ZDV-TP is inhibition of reverse transcriptase (RT) via DNA chain termination after incorporation of the nucleotide analogue. ZDV-TP is a weak inhibitor of the cellular DNA polymerases α and γ and has been reported to be incorporated into the DNA of cells in culture.
Activity of zidovudine against HIV-1 was assessed in a number of cell lines (including monocytes and fresh human peripheral blood lymphocytes). The EC50 and EC90 values for zidovudine were 0.01 to 0.49 µM (1 μM = 0.27 mcg/mL) and 0.1 to 9 μM, respectively. HIV from therapy-naive subjects with no mutations associated with resistance gave median EC50 values of 0.011 µM (range: 0.005 to 0.110 µM) from Virco (n = 93 baseline samples from COLA40263) and 0.02 µM (0.01 to 0.03 µM) from Monogram Biosciences (n = 135 baseline samples from ESS30009). The EC50 values of zidovudine against different HIV-1 clades (A-G) ranged from 0.00018 to 0.02 μM, and against HIV-2 isolates from 0.00049 to 0.004 μM. In cell culture drug combination studies, zidovudine demonstrates synergistic activity with the nucleoside reverse transcriptase inhibitors (NRTIs) abacavir, didanosine, lamivudine, and zalcitabine; the non-nucleoside reverse transcriptase inhibitors (NNRTIs) delavirdine and nevirapine; and the protease inhibitors (PIs) indinavir, nelfinavir, ritonavir, and saquinavir; and additive activity with interferon alfa. Ribavirin has been found to inhibit the phosphorylation of zidovudine in cell culture.
Genotypic analyses of the isolates selected in cell culture and recovered from zidovudine-treated subjects showed mutations in the HIV-1 RT gene resulting in 6 amino acid substitutions (M41L, D67N, K70R, L210W, T215Y or F, and K219Q) that confer zidovudine resistance. In general, higher levels of resistance were associated with greater number of mutations. In some subjects harboring zidovudine-resistant virus at baseline, phenotypic sensitivity to zidovudine was restored by 12 weeks of treatment with lamivudine and zidovudine. Combination therapy with lamivudine plus zidovudine delayed the emergence of mutations conferring resistance to zidovudine.
In a trial of 167 HIV-infected subjects, isolates (n = 2) with multi-drug resistance to didanosine, lamivudine, stavudine, zalcitabine, and zidovudine were recovered from subjects treated for at least 1 year with zidovudine plus didanosine or zidovudine plus zalcitabine. The pattern of resistance-associated mutations with such combination therapies was different (A62V, V75I, F77L, F116Y, Q151M) from the pattern with zidovudine monotherapy, with the Q151M mutation being most commonly associated with multi-drug resistance. The mutation at codon 151 in combination with mutations at 62, 75, 77, and 116 results in a virus with reduced susceptibility to didanosine, lamivudine, stavudine, zalcitabine, and zidovudine. Thymidine analogue mutations (TAMs) are selected by zidovudine and confer cross-resistance to abacavir, didanosine, stavudine, tenofovir, and zalcitabine.
Adults: The pharmacokinetics of zidovudine have been evaluated in 22 adult HIV-infected subjects in a Phase 1 dose-escalation trial. Following intravenous (IV) dosing, dose-independent kinetics was observed over the range of 1 to 5 mg/kg. The major metabolite of zidovudine is 3′-azido-3′-deoxy-5′-O-β-D-glucopyranuronosylthymidine (GZDV). GZDV area under the curve (AUC) is about 3-fold greater than the zidovudine AUC. Urinary recovery of zidovudine and GZDV accounts for 18% and 60%, respectively, following IV dosing. A second metabolite, 3′-amino-3′-deoxythymidine (AMT), has been identified in the plasma following single-dose IV administration of zidovudine. The AMT AUC was one-fifth of the zidovudine AUC.
The mean steady-state peak and trough concentrations of zidovudine at 2.5 mg/kg every 4 hours were 1.06 and 0.12 mcg/mL, respectively.
The zidovudine cerebrospinal fluid (CSF)/plasma concentration ratio was determined in 39 subjects receiving chronic therapy with RETROVIR. The median ratio measured in 50 paired samples drawn 1 to 8 hours after the last dose of RETROVIR was 0.6.
Parameter |
Mean ± SD (except where noted) |
Apparent volume of distribution (L/kg) |
1.6 ± 0.6 (n = 11) |
Plasma protein binding (%) |
<38 |
CSF:plasma ratioa |
0.6 [0.04 to 2.62] (n = 39) |
Systemic clearance (L/hr/kg) |
1.6 (0.8 to 2.7) (n =18) |
Renal clearance (L/hr/kg) |
0.34 ± 0.05 (n = 16) |
Elimination half-life (hr)b |
1.1 (0.5 to 2.9) (n = 19) |
aMedian [range]. |
|
bApproximate range. |
Adults With Impaired Renal Function: Zidovudine clearance was decreased resulting in increased zidovudine and GZDV half-life and AUC in subjects with impaired renal function (n = 14) following a single 200-mg oral dose (Table 2). Plasma concentrations of AMT were not determined. A dose adjustment should not be necessary for patients with creatinine clearance (CrCl) ≥15 mL/min.
Parameter |
Control Subjects (Normal Renal Function) (n = 6) |
Subjects With Renal Impairment (n = 14) |
CrCl (mL/min) |
120 ± 8 |
18 ± 2 |
Zidovudine AUC (ng•hr/mL) |
1,400 ± 200 |
3,100 ± 300 |
Zidovudine half-life (hr) |
1.0 ± 0.2 |
1.4 ± 0.1 |
aData are expressed as mean ± standard deviation. |
The pharmacokinetics and tolerance of oral zidovudine were evaluated in a multiple-dose trial in subjects undergoing hemodialysis (n = 5) or peritoneal dialysis (n = 6) receiving escalating doses up to 200 mg 5 times daily for 8 weeks. Daily doses of 500 mg or less were well tolerated despite significantly elevated GZDV plasma concentrations. Apparent zidovudine oral clearance was approximately 50% of that reported in subjects with normal renal function. Hemodialysis and peritoneal dialysis appeared to have a negligible effect on the removal of zidovudine, whereas GZDV elimination was enhanced. A dosage adjustment is recommended for patients undergoing hemodialysis or peritoneal dialysis (see DOSAGE AND ADMINISTRATION: Dose Adjustment).
Adults With Impaired Hepatic Function: Data describing the effect of hepatic impairment on the pharmacokinetics of zidovudine are limited. However, because zidovudine is eliminated primarily by hepatic metabolism, it is expected that zidovudine clearance would be decreased and plasma concentrations would be increased following administration of the recommended adult doses to patients with hepatic impairment (see DOSAGE AND ADMINISTRATION: Dose Adjustment).
Pediatrics: Zidovudine pharmacokinetics have been evaluated in HIV-infected pediatric subjects (Table 3).
Patients Aged 3 Months to 12 Years: Overall, zidovudine pharmacokinetics in pediatric subjects older than 3 months are similar to those in adult subjects. Proportional increases in plasma zidovudine concentrations were observed following administration of oral solution from 90 to 240 mg/m2 every 6 hours. Oral bioavailability, terminal half-life, and oral clearance were comparable to adult values. As in adult subjects, the major route of elimination was by metabolism to GZDV. After intravenous dosing, about 29% of the dose was excreted in the urine unchanged and about 45% of the dose was excreted as GZDV (see DOSAGE AND ADMINISTRATION: Pediatrics).
Patients Aged Less Than 3 Months: Zidovudine pharmacokinetics have been evaluated in pediatric subjects from birth to 3 months of life. Zidovudine elimination was determined immediately following birth in 8 neonates who were exposed to zidovudine in utero. The half-life was 13.0 ± 5.8 hours. In neonates from birth to 14 days old, bioavailability was greater, total body clearance was slower, and half-life was longer than in pediatric subjects older than 14 days. For dose recommendations for neonates, see DOSAGE AND ADMINISTRATION: Neonatal Dosing.
Parameter |
Birth to 14 Days |
Aged 14 Days to 3 Months |
Aged 3 Months to 12 Years |
Oral bioavailability (%) |
89 ± 19 (n = 15) |
61 ± 19 (n = 17) |
65 ± 24 (n = 18) |
CSF:plasma ratio |
no data |
no data |
0.26 ± 0.17b (n = 28) |
CL (L/h/kg) |
0.65 ± 0.29 (n = 18) |
1.14 ± 0.24 (n = 16) |
1.85 ± 0.47 (n = 20) |
Elimination half-life (h) |
3.1 ± 1.2 (n = 21) |
1.9 ± 0.7 (n = 18) |
1.5 ± 0.7 (n = 21) |
aData presented as mean ± standard deviation except where noted. |
|||
bCSF ratio determined at steady-state on constant intravenous infusion. |
Pregnancy: Zidovudine pharmacokinetics have been studied in a Phase 1 trial of 8 women during the last trimester of pregnancy. As pregnancy progressed, there was no evidence of drug accumulation. Zidovudine pharmacokinetics were similar to those of nonpregnant adults. Consistent with passive transmission of the drug across the placenta, zidovudine concentrations in neonatal plasma at birth were essentially equal to those in maternal plasma at delivery. Although data are limited, methadone maintenance therapy in 5 pregnant women did not appear to alter zidovudine pharmacokinetics. However, in another patient population, a potential for interaction has been identified (see PRECAUTIONS).
Nursing Mothers: The Centers for Disease Control and Prevention recommend that HIV-infected mothers not breastfeed their infants to avoid risking postnatal transmission of HIV. After administration of a single dose of 200 mg zidovudine to 13 HIV-infected women, the mean concentration of zidovudine was similar in human milk and serum (see PRECAUTIONS: Nursing Mothers).
Geriatric Patients: Zidovudine pharmacokinetics have not been studied in subjects over 65 years of age.
Gender: A pharmacokinetic trial in healthy male (n = 12) and female (n = 12) subjects showed no differences in zidovudine exposure (AUC) when a single dose of zidovudine was administered as the 300-mg RETROVIR Tablet.
See Table 4 and PRECAUTIONS: Drug Interactions.
Zidovudine Plus Lamivudine: No clinically significant alterations in lamivudine or zidovudine pharmacokinetics were observed in 12 asymptomatic HIV-infected adult subjects given a single oral dose of zidovudine (200 mg) in combination with multiple oral doses of lamivudine (300 mg every 12 hours).
Coadministered Drug and Dose |
Zidovudine Oral Dose |
n |
Zidovudine Concentrations |
Concentration of Coadministered Drug |
|
AUC |
Variability |
||||
Atovaquone 750 mg q 12 h with food |
200 mg q 8 h |
14 |
↑AUC 31% |
Range 23% to 78%b |
↔ |
Fluconazole 400 mg daily |
200 mg q 8 h |
12 |
↑AUC 74% |
95% CI: 54% to 98% |
Not Reported |
Methadone 30 to 90 mg daily |
200 mg q 4 h |
9 |
↑AUC 43% |
Range 16% to 64%b |
↔ |
Nelfinavir 750 mg q 8 h x 7 to 10 days |
single 200 mg |
11 |
↓AUC 35% |
Range 28% to 41% |
↔ |
Probenecid 500 mg q 6 h x 2 days |
2 mg/kg q 8 h x 3 days |
3 |
↑AUC 106% |
Range 100% to 170%b |
Not Assessed |
Rifampin 600 mg daily x 14 days |
200 mg q 8 h x 14 days |
8 |
↓AUC 47% |
90% CI: 41% to 53% |
Not Assessed |
Ritonavir 300 mg q 6 h x 4 days |
200 mg q 8 h x 4 days |
9 |
↓AUC 25% |
95% CI: 15% to 34% |
↔ |
Valproic acid 250 mg or 500 mg q 8 h x 4 days |
100 mg q 8 h x 4 days |
6 |
↑AUC 80% |
Range 64% to 130%b |
Not Assessed |
↑ = Increase; ↓ = Decrease;↔ = no significant change; AUC = area under the concentration versus time curve; CI = confidence interval. |
|||||
aThis table is not all inclusive. |
|||||
bEstimated range of percent difference. |
Ribavirin: In vitro data indicate ribavirin reduces phosphorylation of lamivudine, stavudine, and zidovudine. However, no pharmacokinetic (e.g., plasma concentrations or intracellular triphosphorylated active metabolite concentrations) or pharmacodynamic (e.g., loss of HIV/HCV virologic suppression) interaction was observed when ribavirin and lamivudine (n = 18), stavudine (n = 10), or zidovudine (n = 6) were coadministered as part of a multi-drug regimen to HIV/HCV co-infected subjects (see WARNINGS).
RETROVIR IV Infusion in combination with other antiretroviral agents is indicated for the treatment of HIV infection.
RETROVIR is also indicated for the prevention of maternal-fetal HIV transmission as part of a regimen that includes oral RETROVIR beginning between 14 and 34 weeks of gestation, intravenous RETROVIR during labor, and administration of RETROVIR Syrup to the neonate after birth. The efficacy of this regimen for preventing HIV transmission in women who have received RETROVIR for a prolonged period before pregnancy has not been evaluated. The safety of RETROVIR for the mother or fetus during the first trimester of pregnancy has not been assessed (see Description of Clinical Studies).
Therapy with RETROVIR has been shown to prolong survival and decrease the incidence of opportunistic infections in subjects with advanced HIV disease at the initiation of therapy and to delay disease progression in asymptomatic HIV-infected subjects.
RETROVIR in combination with other antiretroviral agents has been shown to be superior to monotherapy in one or more of the following endpoints: delaying death, delaying development of AIDS, increasing CD4+ cell counts, and decreasing plasma HIV-1 RNA. The complete prescribing information for each drug should be consulted before combination therapy that includes RETROVIR is initiated.
Pregnant Women and Their Neonates: The utility of RETROVIR for the prevention of maternal-fetal HIV transmission was demonstrated in a randomized, double-blind, placebo-controlled trial (ACTG 076) conducted in HIV-infected pregnant women with CD4+ cell counts of 200 to 1,818 cells/mm3 (median in the treated group: 560 cells/mm3) who had little or no previous exposure to RETROVIR. Oral RETROVIR was initiated between 14 and 34 weeks of gestation (median 11 weeks of therapy) followed by intravenous administration of RETROVIR during labor and delivery. Following birth, neonates received oral RETROVIR Syrup for 6 weeks. The trial showed a statistically significant difference in the incidence of HIV infection in the neonates (based on viral culture from peripheral blood) between the group receiving RETROVIR and the group receiving placebo. Of 363 neonates evaluated in the trial, the estimated risk of HIV infection was 7.8% in the group receiving RETROVIR and 24.9% in the placebo group, a relative reduction in transmission risk of 68.7%. RETROVIR was well tolerated by mothers and infants. There was no difference in pregnancy-related adverse events between the treatment groups.
RETROVIR IV Infusion is contraindicated for patients who have potentially life-threatening allergic reactions to any of the components of the formulation.
COMBIVIR® (lamivudine and zidovudine) Tablets and TRIZIVIR® (abacavir sulfate, lamivudine, and zidovudine) Tablets are combination product tablets that contain zidovudine as one of their components. RETROVIR should not be administered concomitantly with COMBIVIR or TRIZIVIR.
The incidence of adverse reactions appears to increase with disease progression; patients should be monitored carefully, especially as disease progression occurs.
RETROVIR should be used with caution in patients who have bone marrow compromise evidenced by granulocyte count <1,000 cells/mm3 or hemoglobin <9.5 g/dL. In subjects with advanced symptomatic HIV disease, anemia and neutropenia were the most significant adverse events observed. There have been reports of pancytopenia associated with the use of RETROVIR, which was reversible in most instances, after discontinuance of the drug. However, significant anemia, in many cases requiring dose adjustment, discontinuation of RETROVIR, and/or blood transfusions, has occurred during treatment with RETROVIR alone or in combination with other antiretrovirals.
Frequent blood counts are strongly recommended in patients with advanced HIV disease who are treated with RETROVIR. For HIV-infected individuals and patients with asymptomatic or early HIV disease, periodic blood counts are recommended. If anemia or neutropenia develops, dosage adjustments may be necessary (see DOSAGE AND ADMINISTRATION).
Myopathy and myositis with pathological changes, similar to that produced by HIV disease, have been associated with prolonged use of RETROVIR.
Lactic acidosis and severe hepatomegaly with steatosis, including fatal cases, have been reported with the use of nucleoside analogues alone or in combination, including zidovudine and other antiretrovirals. A majority of these cases have been in women. Obesity and prolonged exposure to antiretroviral nucleoside analogues may be risk factors. Particular caution should be exercised when administering RETROVIR to any patient with known risk factors for liver disease; however, cases have also been reported in patients with no known risk factors. Treatment with RETROVIR should be suspended in any patient who develops clinical or laboratory findings suggestive of lactic acidosis or pronounced hepatotoxicity (which may include hepatomegaly and steatosis even in the absence of marked transaminase elevations).
In vitro studies have shown ribavirin can reduce the phosphorylation of pyrimidine nucleoside analogues such as zidovudine. Although no evidence of a pharmacokinetic or pharmacodynamic interaction (e.g., loss of HIV/HCV virologic suppression) was seen when ribavirin was coadministered with zidovudine in HIV/HCV co-infected subjects (see CLINICAL PHARMACOLOGY: Drug Interactions), hepatic decompensation (some fatal) has occurred in HIV/HCV co-infected subjects receiving combination antiretroviral therapy for HIV and interferon alfa with or without ribavirin. Patients receiving interferon alfa with or without ribavirin and RETROVIR should be closely monitored for treatment-associated toxicities, especially hepatic decompensation, neutropenia, and anemia. Discontinuation of RETROVIR should be considered as medically appropriate. Dose reduction or discontinuation of interferon alfa, ribavirin, or both should also be considered if worsening clinical toxicities are observed, including hepatic decompensation (e.g., Childs Pugh >6) (see the complete prescribing information for interferon and ribavirin).
Zidovudine is eliminated from the body primarily by renal excretion following metabolism in the liver (glucuronidation). In patients with severely impaired renal function (CrCl<15 mL/min), dosage reduction is recommended. Although the data are limited, zidovudine concentrations appear to be increased in subjects with severely impaired hepatic function, which may increase the risk of hematologic toxicity (see CLINICAL PHARMACOLOGY: Pharmacokinetics and DOSAGE AND ADMINISTRATION).
Immune reconstitution syndrome has been reported in patients treated with combination antiretroviral therapy, including RETROVIR. During the initial phase of combination antiretroviral treatment, patients whose immune system responds may develop an inflammatory response to indolent or residual opportunistic infections (such as Mycobacterium avium infection, cytomegalovirus, Pneumocystisjirovecii pneumonia [PCP], or tuberculosis), which may necessitate further evaluation and treatment.
Autoimmune disorders (such as Graves’ disease, polymyositis, and Guillain-Barré syndrome) have also been reported to occur in the setting of immune reconstitution, however, the time to onset is more variable, and can occur many months after initiation of treatment.
RETROVIR is not a cure for HIV-1 infection, and patients may continue to experience illnesses associated with HIV-1 infection, including opportunistic infections. Patients should remain under the care of a physician when using RETROVIR.
Patients should be advised to avoid doing things that can spread HIV-1 infection to others.
The safety and efficacy of RETROVIR in treating women, intravenous drug users, and racial minorities is not significantly different than that observed in white males.
Patients should be informed that the major toxicities of RETROVIR are neutropenia and/or anemia. The frequency and severity of these toxicities are greater in patients with more advanced disease and in those who initiate therapy later in the course of their infection. They should be told that if toxicity develops, they may require transfusions or drug discontinuation. They should be told of the extreme importance of having their blood counts followed closely while on therapy, especially for patients with advanced symptomatic HIV disease. They should be cautioned about the use of other medications, including ganciclovir and interferon alfa, which may exacerbate the toxicity of RETROVIR (see PRECAUTIONS: Drug Interactions). Patients should be informed that other adverse effects of RETROVIR include nausea and vomiting. Patients should also be encouraged to contact their physician if they experience muscle weakness, shortness of breath, symptoms of hepatitis or pancreatitis, or any other unexpected adverse events while being treated with RETROVIR.
Pregnant women considering the use of RETROVIR during pregnancy for prevention of HIV transmission to their infants should be advised that transmission may still occur in some cases despite therapy. The long-term consequences of in utero and neonatal exposure to RETROVIR are unknown, including the possible risk of cancer.
HIV-infected pregnant women should be advised not to breastfeed to avoid postnatal transmission of HIV to a child who may not yet be infected.
See CLINICAL PHARMACOLOGY section (Table 4) for information on zidovudine concentrations when coadministered with other drugs. For patients experiencing pronounced anemia or other severe zidovudine-associated events while receiving chronic administration of zidovudine and some of the drugs (e.g., fluconazole, valproic acid) listed in Table 4, zidovudine dose reduction may be considered.
Antiretroviral Agents: Concomitant use of zidovudine with stavudine should be avoided since an antagonistic relationship has been demonstrated in vitro.
Some nucleoside analogues affecting DNA replication, such as ribavirin, antagonize the in vitro antiviral activity of RETROVIR against HIV; concomitant use of such drugs should be avoided.
Doxorubicin: Concomitant use of zidovudine with doxorubicin should be avoided since an antagonistic relationship has been demonstrated in vitro (see CLINICAL PHARMACOLOGY for additional drug interactions).
Phenytoin: Phenytoin plasma levels have been reported to be low in some patients receiving RETROVIR, while in 1 case a high level was documented. However, in a pharmacokinetic interaction trial in which 12 HIV-positive volunteers received a single 300-mg phenytoin dose alone and during steady-state zidovudine conditions (200 mg every 4 hours), no change in phenytoin kinetics was observed. Although not designed to optimally assess the effect of phenytoin on zidovudine kinetics, a 30% decrease in oral zidovudine clearance was observed with phenytoin.
Overlapping Toxicities: Coadministration of ganciclovir, interferon alfa, and other bone marrow suppressive or cytotoxic agents may increase the hematologic toxicity of zidovudine.
Zidovudine was administered orally at 3 dosage levels to separate groups of mice and rats (60 females and 60 males in each group). Initial single daily doses were 30, 60, and 120 mg/kg/day in mice and 80, 220, and 600 mg/kg/day in rats. The doses in mice were reduced to 20, 30, and 40 mg/kg/day after day 90 because of treatment-related anemia, whereas in rats only the high dose was reduced to 450 mg/kg/day on day 91, and then to 300 mg/kg/day on day 279.
In mice, 7 late-appearing (after 19 months) vaginal neoplasms (5 nonmetastasizing squamous cell carcinomas, 1 squamous cell papilloma, and 1 squamous polyp) occurred in animals given the highest dose. One late-appearing squamous cell papilloma occurred in the vagina of a middle-dose animal. No vaginal tumors were found at the lowest dose.
In rats, 2 late-appearing (after 20 months), nonmetastasizing vaginal squamous cell carcinomas occurred in animals given the highest dose. No vaginal tumors occurred at the low or middle dose in rats. No other drug-related tumors were observed in either sex of either species.
At doses that produced tumors in mice and rats, the estimated drug exposure (as measured by AUC) was approximately 3 times (mouse) and 24 times (rat) the estimated human exposure at the recommended therapeutic dose of 100 mg every 4 hours.
Two transplacental carcinogenicity studies were conducted in mice. One study administered zidovudine at doses of 20 mg/kg/day or 40 mg/kg/day from gestation day 10 through parturition and lactation with dosing continuing in offspring for 24 months postnatally. The doses of zidovudine employed in this study produced zidovudine exposures approximately 3 times the estimated human exposure at recommended doses. After 24 months, an increase in incidence of vaginal tumors was noted with no increase in tumors in the liver or lung or any other organ in either gender. These findings are consistent with results of the standard oral carcinogenicity study in mice, as described earlier. A second study administered zidovudine at maximum tolerated doses of 12.5 mg/day or 25 mg/day (~1,000 mg/kg nonpregnant body weight or ~450 mg/kg of term body weight) to pregnant mice from days 12 through 18 of gestation. There was an increase in the number of tumors in the lung, liver, and female reproductive tracts in the offspring of mice receiving the higher dose level of zidovudine. It is not known how predictive the results of rodent carcinogenicity studies may be for humans.
Zidovudine was mutagenic in a 5178Y/TK+/- mouse lymphoma assay, positive in an in vitro cell transformation assay, clastogenic in a cytogenetic assay using cultured human lymphocytes, and positive in mouse and rat micronucleus tests after repeated doses. It was negative in a cytogenetic study in rats given a single dose.
Zidovudine, administered to male and female rats at doses up to 7 times the usual adult dose based on body surface area considerations, had no effect on fertility judged by conception rates.
Pregnancy Category C. Oral teratology studies in the rat and in the rabbit at doses up to 500 mg/kg/day revealed no evidence of teratogenicity with zidovudine. Zidovudine treatment resulted in embryo/fetal toxicity as evidenced by an increase in the incidence of fetal resorptions in rats given 150 or 450 mg/kg/day and rabbits given 500 mg/kg/day. The doses used in the teratology studies resulted in peak zidovudine plasma concentrations (after one-half of the daily dose) in rats 66 to 226 times, and in rabbits 12 to 87 times, mean steady-state peak human plasma concentrations (after one-sixth of the daily dose) achieved with the recommended daily dose (100 mg every 4 hours). In an in vitro experiment with fertilized mouse oocytes, zidovudine exposure resulted in a dose-dependent reduction in blastocyst formation. In an additional teratology study in rats, a dose of 3,000 mg/kg/day (very near the oral median lethal dose in rats of 3,683 mg/kg) caused marked maternal toxicity and an increase in the incidence of fetal malformations. This dose resulted in peak zidovudine plasma concentrations 350 times peak human plasma concentrations. (Estimated area under the curve [AUC] in rats at this dose level was 300 times the daily AUC in humans given 600 mg per day.) No evidence of teratogenicity was seen in this experiment at doses of 600 mg/kg/day or less.
Two rodent transplacental carcinogenicity studies were conducted (see Carcinogenesis, Mutagenesis, Impairment of Fertility).
A randomized, double-blind, placebo-controlled trial was conducted in HIV-infected pregnant women to determine the utility of RETROVIR for the prevention of maternal-fetal HIV transmission (see INDICATIONS AND USAGE: Description of Clinical Studies). Congenital abnormalities occurred with similar frequency between neonates born to mothers who received RETROVIR and neonates born to mothers who received placebo. Abnormalities were either problems in embryogenesis (prior to 14 weeks) or were recognized on ultrasound before or immediately after initiation of study drug.
Antiretroviral Pregnancy Registry: To monitor maternal-fetal outcomes of pregnant women exposed to RETROVIR, an Antiretroviral Pregnancy Registry has been established. Physicians are encouraged to register patients by calling 1-800-258-4263.
The Centers for Disease Control and Prevention recommend that HIV-infected mothers not breastfeed their infants to avoid risking postnatal transmission of HIV.
Zidovudine is excreted in human milk (see CLINICAL PHARMACOLOGY: Pharmacokinetics: Nursing Mothers). Because of both the potential for HIV transmission and the potential for serious adverse reactions in nursing infants, mothers should be instructed not to breastfeed if they are receiving RETROVIR (see Pediatric Use and INDICATIONS AND USAGE: Maternal-Fetal HIV Transmission).
RETROVIR has been studied in HIV-infected pediatric subjects over 3 months of age who had HIV-related symptoms or who were asymptomatic with abnormal laboratory values indicating significant HIV-related immunosuppression. RETROVIR has also been studied in neonates perinatally exposed to HIV (see ADVERSE REACTIONS, DOSAGE AND ADMINISTRATION, INDICATIONS AND USAGE: Description of Clinical Studies, and CLINICAL PHARMACOLOGY: Pharmacokinetics).
Clinical studies of RETROVIR did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.
The adverse events reported during intravenous administration of RETROVIR IV Infusion are similar to those reported with oral administration; neutropenia and anemia were reported most frequently. Long-term intravenous administration beyond 2 to 4 weeks has not been studied in adults and may enhance hematologic adverse events. Local reaction, pain, and slight irritation during intravenous administration occur infrequently.
The frequency and severity of adverse events associated with the use of RETROVIR are greater in subjects with more advanced infection at the time of initiation of therapy.
Table 5 summarizes events reported at a statistically significantly greater incidence for subjects receiving RETROVIR orally in a monotherapy trial.
Adverse Event |
RETROVIR 500 mg/day (n = 453) |
Placebo (n = 428) |
Body as a whole | ||
Asthenia |
8.6%b |
5.8% |
Headache |
62.5% |
52.6% |
Malaise |
53.2% |
44.9% |
Gastrointestinal | ||
Anorexia |
20.1% |
10.5% |
Constipation |
6.4%b |
3.5% |
Nausea |
51.4% |
29.9% |
Vomiting |
17.2% |
9.8% |
aReported in ≥5% of trial population. |
||
bNot statistically significant versus placebo. |
In addition to the adverse events listed in Table 5, other adverse events observed in clinical trials were abdominal cramps, abdominal pain, arthralgia, chills, dyspepsia, fatigue, hyperbilirubinemia, insomnia, musculoskeletal pain, myalgia, and neuropathy.
Selected laboratory abnormalities observed during a clinical trial of monotherapy with oral RETROVIR are shown in Table 6.
Adverse Event |
RETROVIR 500 mg/day (n = 453) |
Placebo (n = 428) |
Anemia (Hgb<8 g/dL) |
1.1% |
0.2% |
Granulocytopenia (<750 cells/mm3) |
1.8% |
1.6% |
Thrombocytopenia (platelets<50,000/mm3) |
0% |
0.5% |
ALT (>5 x ULN) |
3.1% |
2.6% |
AST (>5 x ULN) |
0.9% |
1.6% |
Alkaline phosphatase (>5 x ULN) |
0% |
0% |
ULN = Upper limit of normal. |
Trial ACTG300: Selected clinical adverse events and physical findings with a ≥5% frequency during therapy with EPIVIR® (lamivudine) 4 mg/kg twice daily plus RETROVIR 160 mg/m2 orally 3 times daily compared with didanosine in therapy-naive (≤56 days of antiretroviral therapy) pediatric subjects are listed in Table 7.
Adverse Event |
EPIVIR plus RETROVIR (n = 236) |
Didanosine (n = 235) |
Body as a Whole | ||
Fever |
25% |
32% |
Digestive | ||
Hepatomegaly |
11% |
11% |
Nausea & vomiting |
8% |
7% |
Diarrhea |
8% |
6% |
Stomatitis |
6% |
12% |
Splenomegaly |
5% |
8% |
Respiratory | ||
Cough |
15% |
18% |
Abnormal breath sounds/wheezing |
7% |
9% |
Ear, Nose, and Throat | ||
Signs or symptoms of earsa |
7% |
6% |
Nasal discharge or congestion |
8% |
11% |
Other | ||
Skin rashes |
12% |
14% |
Lymphadenopathy |
9% |
11% |
aIncludes pain, discharge, erythema, or swelling of an ear. |
Selected laboratory abnormalities experienced by therapy-naive (≤56 days of antiretroviral therapy) pediatric subjects are listed in Table 8.
Test (Abnormal Level) |
EPIVIR plus RETROVIR |
Didanosine |
Neutropenia (ANC<400 cells/mm3) |
8% |
3% |
Anemia (Hgb<7.0 g/dL) |
4% |
2% |
Thrombocytopenia (platelets<50,000/mm3) |
1% |
3% |
ALT (>10 x ULN) |
1% |
3% |
AST (>10 x ULN) |
2% |
4% |
Lipase (>2.5 x ULN) |
3% |
3% |
Total amylase (>2.5 x ULN) |
3% |
3% |
ULN = Upper limit of normal. |
||
ANC = Absolute neutrophil count. |
Additional adverse events reported in open-label trials in pediatric subjects receiving RETROVIR 180 mg/m2 every 6 hours were congestive heart failure, decreased reflexes, ECG abnormality, edema, hematuria, left ventricular dilation, macrocytosis, nervousness/irritability, and weight loss.
The clinical adverse events reported among adult recipients of RETROVIR may also occur in pediatric patients.
In a randomized, double-blind, placebo-controlled trial in HIV-infected women and their neonates conducted to determine the utility of RETROVIR for the prevention of maternal-fetal HIV transmission, RETROVIR Syrup at 2 mg/kg was administered every 6 hours for 6 weeks to neonates beginning within 12 hours following birth. The most commonly reported adverse experiences were anemia (hemoglobin <9.0 g/dL) and neutropenia (<1,000 cells/mm3). Anemia occurred in 22% of the neonates who received RETROVIR and in 12% of the neonates who received placebo. The mean difference in hemoglobin values was less than 1.0 g/dL for neonates receiving RETROVIR compared to neonates receiving placebo. No neonates with anemia required transfusion and all hemoglobin values spontaneously returned to normal within 6 weeks after completion of therapy with RETROVIR. Neutropenia was reported with similar frequency in the group that received RETROVIR (21%) and in the group that received placebo (27%). The long-term consequences of in utero and infant exposure to RETROVIR are unknown.
In addition to adverse events reported from clinical trials, the following events have been identified during use of RETROVIR in clinical practice. Because they are reported voluntarily from a population of unknown size, estimates of frequency cannot be made. These events have been chosen for inclusion due to either their seriousness, frequency of reporting, potential causal connection to RETROVIR, or a combination of these factors.
Body as a Whole: Back pain, chest pain, flu-like syndrome, generalized pain.
Cardiovascular: Cardiomyopathy, syncope.
Endocrine: Gynecomastia.
Eye: Macular edema.
Gastrointestinal: Constipation, dysphagia, flatulence, oral mucosal pigmentation, mouth ulcer.
General: Sensitization reactions including anaphylaxis and angioedema, vasculitis.
Hemic and Lymphatic: Aplastic anemia, hemolytic anemia, leukopenia, lymphadenopathy, pancytopenia with marrow hypoplasia, pure red cell aplasia.
Hepatobiliary Tract and Pancreas: Hepatitis, hepatomegaly with steatosis, jaundice, lactic acidosis, pancreatitis.
Musculoskeletal: Increased CPK, increased LDH, muscle spasm, myopathy and myositis with pathological changes (similar to that produced by HIV disease), rhabdomyolysis, tremor.
Nervous: Anxiety, confusion, depression, dizziness, loss of mental acuity, mania, paresthesia, seizures, somnolence, vertigo.
Respiratory: Cough, dyspnea, rhinitis, sinusitis.
Skin: Changes in skin and nail pigmentation, pruritus, rash, Stevens-Johnson syndrome, toxic epidermal necrolysis, sweat, urticaria.
Special Senses: Amblyopia, hearing loss, photophobia, taste perversion.
Urogenital: Urinary frequency, urinary hesitancy.
Acute overdoses of zidovudine have been reported in pediatric patients and adults. These involved exposures up to 50 grams. No specific symptoms or signs have been identified following acute overdosage with zidovudine apart from those listed as adverse events such as fatigue, headache, vomiting, and occasional reports of hematological disturbances. All patients recovered without permanent sequelae. Hemodialysis and peritoneal dialysis appear to have a negligible effect on the removal of zidovudine, while elimination of its primary metabolite, GZDV, is enhanced.
The recommended intravenous dose is 1 mg/kg infused over 1 hour. This dose should be administered 5 to 6 times daily (5 to 6 mg/kg daily). The effectiveness of this dose compared with higher dosing regimens in improving the neurologic dysfunction associated with HIV disease is unknown. A small randomized trial found a greater effect of higher doses of RETROVIR on improvement of neurological symptoms in subjects with pre-existing neurological disease.
Patients should receive RETROVIR IV Infusion only until oral therapy can be administered. The intravenous dosing regimen equivalent to the oral administration of 100 mg every 4 hours is approximately 1 mg/kg intravenously every 4 hours.
The recommended dosing regimen for administration to pregnant women (>14 weeks of pregnancy) and their neonates is:
Maternal Dosing: 100 mg orally 5 times per day until the start of labor. During labor and delivery, intravenous RETROVIR should be administered at 2 mg/kg (total body weight) over 1 hour followed by a continuous intravenous infusion of 1 mg/kg/hour (total body weight) until clamping of the umbilical cord.
Neonatal Dosing: Start neonatal dosing within 12 hours after birth and continue through 6 weeks of age. Neonates unable to receive oral dosing may be administered RETROVIR intravenously. See Table 9. (See PRECAUTIONS if hepatic disease or renal insufficiency is present.)
Table 9. Recommended Neonatal Dosages of RETROVIR
Route |
Total Daily Dose |
Dose and Dosage Regimen |
Oral |
8 mg/kg/day |
2 mg/kg every 6 hours |
IV |
6 mg/kg/day |
1.5 mg/kg infused over 30 minutes, every 6 hours |
Hematologic toxicities appear to be related to pretreatment bone marrow reserve and to dose and duration of therapy. In patients with poor bone marrow reserve, particularly in patients with advanced symptomatic HIV disease, frequent monitoring of hematologic indices is recommended to detect serious anemia or neutropenia (see WARNINGS). In patients who experience hematologic toxicity, reduction in hemoglobin may occur as early as 2 to 4 weeks, and neutropenia usually occurs after 6 to 8 weeks.
Anemia: Significant anemia (hemoglobin of <7.5 g/dL or reduction of >25% of baseline) and/or significant neutropenia (granulocyte count of<750 cells/mm3 or reduction of >50% from baseline) may require a dose interruption until evidence of marrow recovery is observed (see WARNINGS). In patients who develop significant anemia, dose interruption does not necessarily eliminate the need for transfusion. If marrow recovery occurs following dose interruption, resumption in dose may be appropriate using adjunctive measures such as epoetin alfa at recommended doses, depending on hematologic indices such as serum erythropoetin level and patient tolerance.
For patients experiencing pronounced anemia while receiving chronic coadministration of zidovudine and some of the drugs (e.g., fluconazole, valproic acid) listed in Table 4, zidovudine dose reduction may be considered.
End-Stage Renal Disease: In patients maintained on hemodialysis or peritoneal dialysis (CrCl <15 mL/min), recommended dosing is 1 mg/kg every 6 to 8 hours (see CLINICAL PHARMACOLOGY: Pharmacokinetics).
Hepatic Impairment: There are insufficient data to recommend dose adjustment of RETROVIR in patients with mild to moderate impaired hepatic function or liver cirrhosis. Since RETROVIR is primarily eliminated by hepatic metabolism, a reduction in the daily dose may be necessary in these patients. Frequent monitoring of hematologic toxicities is advised (see CLINICAL PHARMACOLOGY: Pharmacokinetics and PRECAUTIONS: General).
RETROVIR IV Infusion must be diluted prior to administration. The calculated dose should be removed from the 20-mL vial and added to 5% Dextrose Injection solution to achieve a concentration no greater than 4 mg/mL. Admixture in biologic or colloidal fluids (e.g., blood products, protein solutions, etc.) is not recommended.
After dilution, the solution is physically and chemically stable for 24 hours at room temperature and 48 hours if refrigerated at 2° to 8°C (36° to 46°F). Care should be taken during admixture to prevent inadvertent contamination. As an additional precaution, the diluted solution should be administered within 8 hours if stored at 25°C (77°F) or 24 hours if refrigerated at 2° to 8°C to minimize potential administration of a microbially contaminated solution.
Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration whenever solution and container permit. Should either be observed, the solution should be discarded and fresh solution prepared.
RETROVIR IV Infusion, 10 mg zidovudine in each mL.
20-mL Single-Use Vial, Tray of 10 (NDC 49702-213-05).
Store vials at 15° to 25°C (59° to 77°F) and protect from light.
RETROVIR, COMBIVIR, and TRIZIVIR are registered trademarks of the ViiV Healthcare group of companies.
Manufactured for:
ViiV Healthcare
Research Triangle Park, NC 27709
by:
GlaxoSmithKline
Research Triangle Park, NC 27709
©2013, ViiV Healthcare group of companies. All rights reserved.
October 2013
RTV: 4PI
NDC 49702-213-01
RETROVIR®
(zidovudine)
IV INFUSION STERILE
20-mL Single-Use Vial
200 mg/20 mL (10 mg/mL)
MUST BE DILUTED PRIOR TO INTRAVENOUS INFUSION.
Rx only
Contains no preservative. The vial stopper of this product contains dry natural rubber. The vehicle contains Water for Injection, qs. Hydrochloric acid and/or sodium hydroxide may have been added to adjust pH. See prescribing information for dosage information. Store at 15o to 25oC (59o to 77oF) and protect from light.
Manufactured for: ViiV Healthcare, RTP, NC 27709
RETROVIR is a registered trademark
Made in India
10000000122843 Rev. 11/13
RETROVIR
zidovudine injection, solution |
||||||||||||||||||||
|
||||||||||||||||||||
|
||||||||||||||||||||
|
||||||||||||||||||||
|
||||||||||||||||||||
|
Labeler - ViiV Healthcare Company (027295585) |