HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use ATROPINE SULFATE INJECTION safely and effectively. See full prescribing information for ATROPINE SULFATE INJECTION.

ATROPINE SULFATE injection, for intravenous use

Initial U.S. Approval: 1960

INDICATIONS AND USAGE
Atropine is a muscarinic antagonist indicated for temporary blockade of severe or life threatening muscarinic effects. (1)

DOSAGE AND ADMINISTRATION

• For intravenous administration (2.1)
• Titrate according to heart rate, PR interval, blood pressure and symptoms (2.1)
• Adult dosage
 - Antisialagogue or for antivagal effects: Initial single dose of 0.5 mg to 1 mg (2.2)
 - Antidote for organophosphorus or muscarinic mushroom poisoning: Initial single dose of 2 mg to 3 mg, repeated every 20–30 minutes (2.2)
 - Bradyasystolic cardiac arrest: 1 mg dose, repeated every 3–5 minutes if asystole persists (2.2)
• Patients with Coronary Artery Disease: Limit the total dose to 0.03 mg/kg to 0.04 mg/kg (2.4)

DOSAGE FORMS AND STRENGTHS
0.1 mg/mL injection in Glass Syringe (3)

CONTRAINDICATIONS
None. (4)

WARNINGS AND PRECAUTIONS
Tachycardia (5.1)
Glaucoma (5.2)
Pyloric obstruction (5.3)
Worsening urinary retention (5.4)
Viscid bronchial plugs (5.5)

ADVERSE REACTIONS
Most adverse reactions are directly related to atropine’s antimuscarinic action. Dryness of the mouth, blurred vision, photophobia and tachycardia commonly occur with chronic administration of therapeutic doses. (6)

To report SUSPECTED ADVERSE REACTIONS, contact Amphastar Pharmaceuticals, Inc. at 1-800-423-4136, or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. (6)

DRUG INTERACTIONS
Mexiletine: Decreases rate of mexiletine absorption. (7.1)

Revised: 2/2021

FULL PRESCRIBING INFORMATION: CONTENTS*
1 INDICATIONS AND USAGE
2 DOSAGE AND ADMINISTRATION
 2.1 General Administration
 2.2 Adult Dosage
 2.3 Pediatric Dosage
 2.4 Dosing in Patients with Coronary Artery Disease
FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

Atropine Sulfate Injection, USP, is indicated for temporary blockade of severe or life threatening muscarinic effects, e.g., as an antisialagogue, an antivagal agent, an antidote for organophosphorus or muscarinic mushroom poisoning, and to treat bradyasystolic cardiac arrest.

2 DOSAGE AND ADMINISTRATION

2.1 General Administration

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit. Do not administer unless solution is clear and seal is intact. Each syringe is intended for single dose only. Discard unused portion.

For intravenous administration.
Titrated based on heart rate, PR interval, blood pressure and symptoms.

2.2 Adult Dosage

<table>
<thead>
<tr>
<th>Use</th>
<th>Dose (adults)</th>
<th>Repeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antisialagogue or other antivagal</td>
<td>0.5 to 1 mg</td>
<td>1-2 hours</td>
</tr>
<tr>
<td>Organophosphorus or muscarinic mushroom poisoning</td>
<td>2 to 3 mg</td>
<td>20–30 minutes</td>
</tr>
<tr>
<td>Bradyasystolic cardiac arrest</td>
<td>1 mg</td>
<td>3–5 minutes; 3 mg maximum total dose</td>
</tr>
</tbody>
</table>

2.3 Pediatric Dosage

Dosing in pediatric populations has not been well studied. Usual initial dose is 0.01 to 0.03 mg/kg.

2.4 Dosing in Patients with Coronary Artery Disease

Limit the total dose of atropine sulfate to 0.03 mg/kg to 0.04 mg/kg [see Warnings and Precautions (5.1)].

3 DOSAGE FORMS AND STRENGTHS

Injection: 0.1 mg/mL in Glass Syringes

4 CONTRAINDICATIONS

None.

5 WARNINGS AND PRECAUTIONS

5.1 Tachycardia

When the recurrent use of atropine is essential in patients with coronary artery disease, the total dose should be restricted to 2 to 3 mg (maximum 0.03 to 0.04 mg/kg) to avoid the detrimental effects of atropine-induced tachycardia on myocardial oxygen demand.

5.2 Acute Glaucoma

Atropine may precipitate acute glaucoma.

5.3 Pyloric Obstruction

Atropine may convert partial organic pyloric stenosis into complete obstruction.

5.4 Complete Urinary Retention
Atropine may lead to complete urinary retention in patients with prostatic hypertrophy.

5.5 Viscid Plugs

Atropine may cause inspissation of bronchial secretions and formation of viscid plugs in patients with chronic lung disease.

6 ADVERSE REACTIONS

The following adverse reactions have been identified during post-approval use of atropine sulfate. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Most of the side effects of atropine are directly related to its antimuscarinic action. Dryness of the mouth, blurred vision, photophobia and tachycardia commonly occur. Anhidrosis can produce heat intolerance. Constipation and difficulty in micturition may occur in elderly patients. Occasional hypersensitivity reactions have been observed, especially skin rashes which in some instances progressed to exfoliation.

7 DRUG INTERACTIONS

7.1 Mexiletine

Atropine Sulfate Injection decreased the rate of mexiletine absorption without altering the relative oral bioavailability; this delay in mexiletine absorption was reversed by the combination of atropine and intravenous metoclopramide during pretreatment for anesthesia.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Animal reproduction studies have not been conducted with atropine. It also is not known whether atropine can cause fetal harm when given to a pregnant woman or can affect reproduction capacity.

8.3 Nursing Mothers

Trace amounts of atropine was found in breast milk. The clinical impact of this is not known.

8.4 Pediatric Use

Recommendations for use in pediatric patients are not based on clinical trials.

8.5 Geriatric Use

An evaluation of current literature revealed no clinical experience identifying differences in response between elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range,
reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

10 OVERDOSE

Excessive dosing may cause palpitation, dilated pupils, difficulty in swallowing, hot dry skin, thirst, dizziness, restlessness, tremor, fatigue and ataxia. Toxic doses lead to restlessness and excitement, hallucinations, delirium and coma. Depression and circulatory collapse occur only with severe intoxication. In such cases, blood pressure declines and death due to respiratory failure may ensue following paralysis and coma.

The fatal adult dose of atropine is not known. In pediatric populations, 10 mg or less may be fatal.

In the event of toxic overdosage, a short acting barbiturate or diazepam may be given as needed to control marked excitement and convulsions. Large doses for sedation should be avoided because central depressant action may coincide with the depression occurring late in atropine poisoning. Central stimulants are not recommended.

Physostigmine, given as an atropine antidote by slow intravenous injection of 1 to 4 mg (0.5 to 1 mg in pediatric populations), rapidly abolishes delirium and coma caused by large doses of atropine. Since physostigmine is rapidly destroyed, the patient may again lapse into coma after one to two hours, and repeated doses may be required.

Artificial respiration with oxygen may be necessary. Ice bags and alcohol sponges help to reduce fever, especially in pediatric populations.

Atropine is not removed by dialysis.

11 DESCRIPTION

Atropine Sulfate Injection, USP is a sterile, nonpyrogenic isotonic solution of atropine sulfate monohydrate in water for injection with sodium chloride sufficient to render the solution isotonic. It is administered parenterally by intravenous injection.

Each milliliter (mL) contains 0.1 mg (adult strength) of atropine sulfate monohydrate equivalent to 0.083 mg (adult strength) of atropine, and sodium chloride, 9 mg. May contain sodium hydroxide and/or sulfuric acid for pH adjustment 0.308 mOsmol/mL (calc.). pH 3.0 to 6.5.

Sodium chloride added to render the solution isotonic for injection of the active ingredient is present in amounts insufficient to affect serum electrolyte balance of sodium (Na⁺) and chloride (Cl⁻) ions.

The solution contains no bacteriostat, antimicrobial agent or added buffer (except for pH adjustment) and is intended for use only as a single-dose injection. When smaller doses are required the unused portion should be discarded.

Atropine Sulfate, USP is chemically designated 1α H, 5α H-Tropan-3-α-ol (±)-tropate (ester), sulfate (2:1) (salt) monohydrate, (C₁₇H₂₃NO₃)₂ • H₂SO₄ • H₂O, colorless crystals or white crystalline powder very soluble in water. It has the following structural
Atropine, a naturally occurring belladonna alkaloid, is a racemic mixture of equal parts of d- and l-hyocyamine, whose activity is due almost entirely to the levo isomer of the drug.

Sodium Chloride, USP is chemically designated NaCl, a white crystalline powder freely soluble in water.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Atropine is an antimuscarinic agent since it antagonizes the muscarine-like actions of acetylcholine and other choline esters.

Atropine inhibits the muscarinic actions of acetylcholine on structures innervated by postganglionic cholinergic nerves, and on smooth muscles which respond to endogenous acetylcholine but are not so innervated. As with other antimuscarinic agents, the major action of atropine is a competitive or surmountable antagonism which can be overcome by increasing the concentration of acetylcholine at receptor sites of the effector organ (e.g., by using anticholinesterase agents which inhibit the enzymatic destruction of acetylcholine). The receptors antagonized by atropine are the peripheral structures that are stimulated or inhibited by muscarine (i.e., exocrine glands and smooth and cardiac muscle). Responses to postganglionic cholinergic nerve stimulation also may be inhibited by atropine but this occurs less readily than with responses to injected (exogenous) choline esters.

12.2 Pharmacodynamics

Atropine-induced parasympathetic inhibition may be preceded by a transient phase of stimulation, especially on the heart where small doses first slow the rate before characteristic tachycardia develops due to paralysis of vagal control. Atropine exerts a more potent and prolonged effect on heart, intestine and bronchial muscle than scopolamine, but its action on the iris, ciliary body and certain secretory glands is weaker than that of scopolamine. Unlike the latter, atropine in clinical doses does not depress the central nervous system but may stimulate the medulla and higher cerebral centers. Although mild vagal excitation occurs, the increased respiratory rate and (sometimes) increased depth of respiration produced by atropine are more probably the result of bronchiolar dilatation. Accordingly, atropine is an unreliable respiratory stimulant and large or repeated doses may depress respiration.

Adequate doses of atropine abolish various types of reflex vagal cardiac slowing or asystole. The drug also prevents or abolishes bradycardia or asystole produced by
injection of choline esters, anticholinesterase agents or other parasympathomimetic
drugs, and cardiac arrest produced by stimulation of the vagus. Atropine also may
lessen the degree of partial heart block when vagal activity is an etiologic factor. In some
patients with complete heart block, the idioventricular rate may be accelerated by
atropine; in others, the rate is stabilized. Occasionally a large dose may cause
atrioventricular (A-V) block and nodal rhythm.

Atropine Sulfate Injection, USP in clinical doses counteracts the peripheral dilatation and
abrupt decrease in blood pressure produced by choline esters. However, when given by
itself, atropine does not exert a striking or uniform effect on blood vessels or blood
pressure. Systemic doses slightly raise systolic and lower diastolic pressures and can
produce significant postural hypotension. Such doses also slightly increase cardiac
output and decrease central venous pressure. Occasionally, therapeutic doses dilate
cutaneous blood vessels, particularly in the “blush” area (atropine flush), and may cause
atropine “fever” due to suppression of sweat gland activity in infants and small children.
The effects of intravenous atropine on heart rate (maximum heart rate) and saliva flow
(minimum flow) after intravenous administration (rapid, constant infusion over 3 min.)
are delayed by 7 to 8 minutes after drug administration and both effects are non-linearly
related to the amount of drug in the peripheral compartment. Changes in plasma
atropine levels following intramuscular administration (0.5 to 4 mg doses) and heart rate
are closely overlapped but the time course of the changes in atropine levels and
behavioral impairment indicates that pharmacokinetics is not the primary rate-limiting
mechanism for the central nervous system effect of atropine.

12.3 Pharmacokinetics

Atropine disappears rapidly from the blood following injection and is distributed
throughout the body. Exercise, both prior to and immediately following intramuscular
administration of atropine, significantly increases the absorption of atropine due to
increased perfusion in the muscle and significantly decreases the clearance of atropine.
The pharmacokinetics of atropine is nonlinear after intravenous administration of 0.5 to
4 mg. Atropine’s plasma protein binding is about 44% and saturable in the 2–20 μg/mL
concentration range. Atropine readily crosses the placental barrier and enters the fetal
circulation, but is not found in amniotic fluid. Much of the drug is destroyed by
enzymatic hydrolysis, particularly in the liver; from 13 to 50% is excreted unchanged in
the urine. Traces are found in various secretions, including milk. The major metabolites
of atropine are noratropine, atropin-n-oxide, tropine, and tropic acid. The metabolism of
atropine is inhibited by organophosphate pesticides.

Specific Populations
The elimination half-life of atropine is more than doubled in children under two years and
the elderly (>65 years old) compared to other age groups. There is no gender effect on
the pharmacokinetics and pharmacodynamics (heart rate changes) of atropine.

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility
Studies have not been performed to evaluate the carcinogenic or mutagenic potential of
atropine or its potential to affect fertility adversely.
16 HOW SUPPLIED/STORAGE AND HANDLING
Atropine Sulfate Injection, USP, 1 mg/10 mL (0.1 mg/mL), is supplied in single-dose syringes as follows:
In unit-use packages containing a Luer-Jet™ Luer-Lock Prefilled Syringe.

<table>
<thead>
<tr>
<th>Stock No.</th>
<th>NDC No.</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3340</td>
<td>76329-3340-1</td>
<td>FOR I.V. USE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 mL</td>
</tr>
</tbody>
</table>

Ten cartons per package.
Store at 20°C to 25°C (68°F to 77°F); excursions permitted between 15°C to 30°C (59°F to 86°F). [See USP Controlled Room Temperature.]

Rx Only
INTERNATIONAL MEDICATION SYSTEMS, LIMITED
So. El Monte, CA 91733, U.S.A.
An Amphastar Pharmaceuticals Company

© INTERNATIONAL MEDICATION SYSTEMS, LIMITED 2020
6933390J

Carton Label and Principal Display Panel Text
Luer-Lock Prefilled Syringe
Rx Only
NDC 76329-3340-1 STOCK NO. 3340
ATROPINE SULFATE INJECTION, USP
1 mg/10mL (0.1 mg/mL)
1 mg per
10 mL
FOR INTRAVENOUS USE
10 mL Single-dose syringe. Discard unused portion.
LUER-JET™ Luer-Lock Prefilled Syringe
ATROPINE SULFATE
atropine sulfate injection

Product Information

Product Type: HUMAN PRESCRIPTION DRUG
Route of Administration: INTRAVENOUS

Ingredient Information

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Basis of Strength</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATROPINE SULFATE</td>
<td>ATROPINE SULFATE</td>
<td>0.1 mg in 1 mL</td>
</tr>
</tbody>
</table>

Inactive Ingredients

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>SODIUM CHLORIDE</td>
<td></td>
</tr>
<tr>
<td>SODIUM HYDROXIDE</td>
<td></td>
</tr>
</tbody>
</table>
SULFURIC ACID (UNII: O4UQP6WCF)

Packaging

<table>
<thead>
<tr>
<th>#</th>
<th>Item Code</th>
<th>Package Description</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NDC:76329-3340-1</td>
<td>10 in 1 PACKAGE</td>
<td>02/16/2021</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 in 1 CARTON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10 mL in 1 SYRINGE; Type 2: Prefilled Drug Delivery Device/System (syringe, patch, etc.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marketing Information

<table>
<thead>
<tr>
<th>Marketing Category</th>
<th>Application Number or Monograph Citation</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDA</td>
<td>ANDA212461</td>
<td>02/16/2021</td>
<td></td>
</tr>
</tbody>
</table>

Labeler - International Medication Systems, Limited (055750020)

Establishment

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>ID/FEI</th>
<th>Business Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Medication Systems, Limited</td>
<td></td>
<td>055750020</td>
<td>manufacture(76329-3340), analysis(76329-3340), label(76329-3340)</td>
</tr>
</tbody>
</table>

Revised: 2/2021

International Medication Systems, Limited