PLASMA-LYTE A- sodium chloride, sodium gluconate, sodium acetate, potassium chloride and magnesium chloride injection, solution
Baxter Healthcare Corporation

PLASMA-LYTE A Injection
pH 7.4 (Multiple Electrolytes Injection, Type 1, USP)
in VIAFLEX Plastic Container

DESCRIPTION

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) is a sterile, nonpyrogenic isotonic solution in a single dose container for intravenous administration. Each 100 mL contains 526 mg of Sodium Chloride, USP (NaCl); 502 mg of Sodium Gluconate (C$_7$H$_{11}$NaO$_7$); 368 mg of Sodium Acetate Trihydrate, USP (C$_2$H$_3$NaO$_2$•3H$_2$O); 37 mg of Potassium Chloride, USP (KCl); and 30 mg of Magnesium Chloride, USP (MgCl$_2$•6H$_2$O). It contains no antimicrobial agents. The pH is adjusted with sodium hydroxide. The pH is 7.4 (6.5 to 8.0).

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) administered intravenously has value as a source of water, electrolytes, and calories. One liter has an ionic concentration of 140 mEq sodium, 5 mEq potassium, 3 mEq magnesium, 98 mEq chloride, 27 mEq acetate, and 23 mEq gluconate. The osmolarity is 294 mOsmol/L (calc). Normal physiologic osmolarity range is 280 to 310 mOsmol/L. The caloric content is 21 kcal/L.

The VIAFLEX plastic container is fabricated from a specially formulated polyvinyl chloride (PL 146 Plastic). The amount of water that can permeate from inside the container into the overwrap is insufficient to affect the solution significantly. Solutions in contact with the plastic container can leach out certain of its chemical components in very small amounts within the expiration period, e.g., di-2-ethylhexyl phthalate (DEHP), up to 5 parts per million. However, the safety of the plastic has been confirmed in tests in animals according to USP biological tests for plastic containers as well as by tissue culture toxicity studies.

CLINICAL PHARMACOLOGY

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) has value as a source of water and electrolytes. It is capable of inducing diuresis depending on the clinical condition of the patient.

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) produces a metabolic alkalinizing effect. Acetate and gluconate ions are metabolized ultimately to carbon dioxide and water, which requires the consumption of hydrogen cations.

INDICATIONS AND USAGE

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) is indicated as a source of water and electrolytes or as an alkalinizing agent.
CONTRAINDICATIONS

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) is contraindicated in patients with a known hypersensitivity to the product. See WARNINGS.

WARNINGS

Hypersensitivity Reactions

Hypersensitivity and infusion reactions have been reported with PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP). See ADVERSE REACTIONS.

Stop the infusion immediately if signs or symptoms of a hypersensitivity reaction develop, such as tachycardia, chest pain, dyspnea and flushing. Appropriate therapeutic countermeasures must be instituted as clinically indicated.

Electrolyte Imbalances

Fluid Overload

Depending on the volume and rate of infusion, the intravenous administration of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) can cause electrolyte disturbances such as overhydration, and congested states, including pulmonary congestion and edema.

Avoid PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients with or at risk for fluid and/or solute overloading. If use cannot be avoided, monitor fluid balance, electrolyte concentrations, and acid base balance, as needed and especially during prolonged use.

Hyponatremia

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) may cause hyponatremia. Hyponatremia can lead to acute hyponatremic encephalopathy characterized by headache, nausea, seizures, lethargy, and vomiting. Patients with brain edema are at particular risk of severe, irreversible and life-threatening brain injury.

The risk of hospital-acquired hyponatremia is increased in patients with cardiac or pulmonary failure, and in patients with non-osmotic vasopressin release (including SIADH) treated with high volume of hypotonic PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP).

Avoid PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in hypervolemic or overhydrated patients. If use cannot be avoided, monitor serum sodium concentrations.

Hypernatremia

Hypernatremia may occur with PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP)). Conditions that may increase the risk of hypernatremia, fluid overload and edema (central and peripheral), include patients with: primary hyperaldosteronism; secondary hyperaldosteronism associated with, for example,
hypertension, congestive heart failure, liver disease (including cirrhosis), renal disease (including renal artery stenosis, nephrosclerosis); and pre-eclampsia.

Certain medications, such as corticosteroids or corticotropin, may also increase risk of sodium and fluid retention, see PRECAUTIONS.

Avoid PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients with, or at risk for, hypernatremia. If use cannot be avoided, monitor serum sodium concentrations.

Hypermagnesemia

Avoid solutions containing magnesium including PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients with or predisposed to hypermagnesemia, including patients with severe renal impairment and those patients receiving magnesium therapy (e.g., treatment of eclampsia and myasthenia gravis).

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) is not indicated for the treatment of hypomagnesemia.

Acidosis

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) is not for use for the treatment of lactic acidosis or severe metabolic acidosis in patients with severe liver and/or renal impairment.

Alkalosis

Excess administration of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) can result in metabolic alkalosis. Avoid PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients with alkalosis or at risk for alkalosis.

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) is not indicated for the treatment of hypochloremic hypokalemic alkalosis. Avoid use in patients with hypochloremic hypokalemic alkalosis.

Hypocalcemia

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) contains no calcium, and an increase in plasma pH due to its alkalinizing effect may lower the concentration of ionized (not protein-bound) calcium. Avoid PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients with hypocalcemia.

Hyperkalemia

Potassium-containing solutions, including PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) may increase the risk of hyperkalemia.

Patient’s at increased risk of developing hyperkalemia include those:

- With conditions predisposing to hyperkalemia and/or associated with increased sensitivity to potassium, such as patients with severe renal impairment, acute dehydration, extensive tissue injury or burns, certain cardiac disorders such as congestive heart failure.
- Treated concurrently or recently with agents or products that cause or increase the risk of hyperkalemia (see PRECAUTIONS).
Avoid PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients with, or at risk for hyperkalemia. If use cannot be avoided, monitor serum potassium concentrations.

Although PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) has a potassium concentration in plasma, it is insufficient to produce a useful effect in case of severe potassium deficiency; therefore, it is not indicated for correction of severe potassium deficiency.

PRECAUTIONS

Patients with Renal Impairment

In patients with renal impairment, administration of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) may result in sodium and/or potassium or magnesium retention (see **WARNINGS**). PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients with severe renal impairment or conditions that may cause sodium and/or potassium retention or magnesium retention, fluid overload, or edema. If use cannot be avoided, monitor patients with severe renal impairment for development of these adverse reactions.

Drug Interactions

Other Products that Affect Fluid and/or Electrolyte Balance

Administration of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) to patients treated concomitantly with drugs associated with sodium and fluid retention, may increase the risk of hypernatremia and volume overload. Avoid use of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients receiving such products, such as corticosteroids or corticotropin. If use cannot be avoided, monitor serum electrolytes, fluid balance and acid-base balance.

Other Drugs that Increase the Risk of Hyponatremia

Administration of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients treated concomitantly with medications associated with hyponatremia may increase the risk of developing hyponatremia.

Avoid use of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients receiving products, such as diuretics, and certain antiepileptic and psychotropic medications. Drugs that increase the vasopressin effect reduce renal electrolyte free water excretion and may also increase the risk of hyponatremia following treatment with intravenous fluids. If use cannot be avoided, monitor serum sodium concentrations.

Lithium

Renal clearance of lithium may be increased during administration of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP). Monitor serum lithium concentrations during concomitant use.

Other Products that Increase the Risk of Hyperkalemia

Because of its potassium content, avoid use of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in patients with, or at risk for hyperkalemia. If use cannot be avoided, monitor serum potassium concentrations.

Although PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) has a potassium concentration in plasma, it is insufficient to produce a useful effect in case of severe potassium deficiency; therefore, it is not indicated for correction of severe potassium deficiency.
Electrolytes Injection, Type 1, USP) in patients receiving products that can cause hyperkalemia or increase the risk of hyperkalemia, such as potassium sparing diuretics, ACE inhibitors, angiotensin II receptor antagonists, or the immunosuppressants tacrolimus and cyclosporine. If use cannot be avoided, monitor serum potassium concentrations.

Drugs with pH Dependent Renal Elimination

Due to its alkalinizing effect (formation of bicarbonate), PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) may interfere with the elimination of drugs with pH dependent renal elimination. Renal clearance of acidic drugs may be increased. Renal clearance of alkaline drugs may be decreased.

Drug/Laboratory Test Interactions

There have been reports of positive test results using the Bio-Rad Laboratories Platelia *Aspergillus* EIA test in patients receiving Baxter gluconate containing PLASMA-LYTE solutions. These patients were subsequently found to be free of *Aspergillus* infection. Therefore, positive test results for this test in patients receiving Baxter gluconate containing PLASMA-LYTE solutions should be interpreted cautiously and confirmed by other diagnostic methods.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Studies with PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) have not been performed to evaluate carcinogenic potential, mutagenic potential, or effects on fertility.

Pregnancy

Teratogenic Effects

Animal reproduction studies have not been conducted with PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP). It is also not known whether PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) can cause fetal harm when administered to a pregnant woman or can affect reproduction capacity. PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) should be given to a pregnant woman only if clearly needed.

Nursing Mothers

It is not known whether this drug is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) is administered to a nursing mother.

Pediatric Use

The use of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in pediatric patients is based on clinical practice.

Geriatric Use

Geriatric patients are at increased risk of developing electrolyte imbalances. PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) is known to be
substantially excreted by the kidney, and the risk of toxic reactions to this drug may be
greater in patients with impaired renal function. Therefore, dose selection for an elderly
patient should be cautious, usually starting at the low end of the dosing range, reflecting
the greater frequency of decreased hepatic, renal, or cardiac function, and of
concomitant disease or other drug therapy. Consider monitoring renal function in elderly
patients.

ADVERSE REACTIONS

Post-Marketing Adverse Reactions

The following adverse reactions associated with the use of PLASMA-LYTE A Injection pH
7.4 (Multiple Electrolytes Injection, Type 1, USP) were identified in clinical trials or
postmarketing reports. Because postmarketing reactions were reported voluntarily from
a population of uncertain size, it is not always possible to estimate their frequency,
reliably, or to establish a causal relationship to drug exposure.

*Hypersensitivity and Infusion Reactions: tachycardia, chest pain, chest discomfort,
dyspnea, flushing, hyperemia, asthenia, pyrexia, hypotension, wheezing, urticaria, cold
sweat, chills.*

*General Disorders and Administration Site Conditions: infusion site pain, burning
sensation.*

Metabolism and nutrition disorders: hyperkalemia, hyponatremia.

Nervous System Disorders: hyponatremic encephalopathy.

Overdose

Excessive administration of PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes
Injection, Type 1, USP) can cause:

- fluid overload with a risk of edema (peripheral and/or pulmonary), particularly when
 renal sodium excretion is impaired.
- hypernatremia and hyperkalemia, especially in patients with severe renal
 impairment.
- hypermagnesemia. See **WARNINGS** and **ADVERSE REACTIONS**
- metabolic alkalosis with or without hypokalemia and decreased ionized serum
 calcium and magnesium concentrations.

When assessing an overdose, any additives in the solution must also be considered.

The effects of an overdose may require immediate medical attention and treatment.

Interventions include discontinuation of PLASMA-LYTE A Injection pH 7.4 (Multiple
Electrolytes Injection, Type 1, USP), dose reduction, and other measures as indicated for
the specific clinical constellation (e.g., monitoring of fluid balance, electrolyte
concentrations and acid base balance).

DOSAGE AND ADMINISTRATION

Important Administration Instructions
Dosing Information

The choice of product, dosage, volume, rate, and duration of administration is dependent upon the age, weight and clinical condition of the patient and concomitant therapy, and administration should be determined by a physician experienced in intravenous fluid therapy.

Introduction of Additives

Additives may be incompatible.

Evaluate all additions to the plastic container for compatibility and stability of the resulting preparation. Consult with a pharmacist, if available.

If, in the informed judgment of the physician, it is deemed advisable to introduce additives, use aseptic technique. Mix thoroughly when additives have been introduced. After addition, if there is a discoloration and/or the appearance of precipitates, insoluble complexes or crystals, do not use. Do not store solutions containing additives. Discard any unused portion.

HOW SUPPLIED

PLASMA-LYTE A Injection pH 7.4 (Multiple Electrolytes Injection, Type 1, USP) in VIAFLEX plastic containers is available as shown below:

<table>
<thead>
<tr>
<th>Code</th>
<th>Size (mL)</th>
<th>NDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2B2544</td>
<td>1000</td>
<td>NDC 0338-0221-04</td>
</tr>
<tr>
<td>2B2543</td>
<td>500</td>
<td>NDC 0338-0221-03</td>
</tr>
</tbody>
</table>
Exposure of pharmaceutical products to heat should be minimized. Avoid excessive heat. It is recommended the product be stored at room temperature (25°C); brief exposure up to 40°C does not adversely affect the product.

DIRECTIONS FOR USE OF VIAFLEX PLASTIC CONTAINER

For Information on Risk of Air Embolism – see DOSAGE AND ADMINISTRATION

To Open

Tear overwrap down side at slit and remove solution container. Visually inspect the container. If the outlet port protector is damaged, detached, or not present, discard container as solution path sterility may be impaired. Some opacity of the plastic due to moisture absorption during the sterilization process may be observed. This is normal and does not affect the solution quality or safety. The opacity will diminish gradually. Check for minute leaks by squeezing inner bag firmly. If leaks are found, discard solution as sterility may be impaired. If supplemental medication is desired, follow directions below.

Preparation for Administration

1. Suspend container from eyelet support.
2. Remove protector from outlet port at bottom of container.
3. Attach administration set. Refer to complete directions accompanying set.

To Add Medication

To add medication before solution administration

1. Prepare medication site.
2. Using syringe with 19 to 22 gauge needle, puncture resealable medication port and inject.
3. Mix solution and medication thoroughly. For high density medication such as potassium chloride, squeeze ports while ports are upright and mix thoroughly.

To add medication during solution administration

1. Close clamp on the set.
2. Prepare medication site.
3. Using syringe with 19 to 22 gauge needle, puncture resealable medication port and inject.
4. Remove container from IV pole and/or turn to an upright position.
5. Evacuate both ports by squeezing them while container is in the upright position.
6. Mix solution and medication thoroughly.
7. Return container to in use position and continue administration.

Baxter Healthcare Corporation
Deerfield, IL 60015 USA

Printed in USA
07-19-00-1559
Baxter, Plasma-Lyte, Viaflex, and PL 146 are trademarks of Baxter International Inc.

Package Label - Principal Display Panel

![Image of package label]

Plasma-Lyte A Injection pH 7.4 (Multiple Electrolytes Injection Type 1 USP)

1000 mL

Each 100 mL contains: 526 mg Sodium Chloride USP, 502 mg Sodium Gluconate USP, 366 mg Sodium Acetate Trihydrate USP, 37 mg Potassium Chloride USP, 30 mg Magnesium Chloride USP, pH Adjusted with Sodium Hydroxide pH 7.4 (6.5 to 8.0) mEq/L Sodium 140 Potassium 5 Magnesium 3 Chloride 98 Acetate 27 Gluconate 23 Osmolarity 294 mOsmol/L (Calc). Sterile Nonpyrogenic Single dose container. Additives may be incompatible. Consult with pharmacist if available. When introducing additives use aseptic technique. Mix thoroughly. Do not store. Do not use Intravenously as directed by a physician. See directions. Cautions: Squeeze and inspect inner bag which maintains product sterility. Discard if bag is punctured. Must not be used in series connections. Do not use unless solution is clear. Rx only Store unit in moisture barrier overwrap at room temperature (25°C/77°F) until ready to use. Avoid excessive heat. See insert. Viaflex container. PL 146 plastic. Baxter Plasma-Lyte Viaflex and PL 146 are trademarks of Baxter International Inc.

For product information 1-800-993-0303

Baxter Healthcare Corporation
Deerfield IL 60015 USA
Made in USA

Plasma-Lyte A Injection pH 7.4 (Multiple Electrolytes Injection Type 1 USP) 1000mL Container Label

Plasma-Lyte A Injection pH 7.4 (Multiple Electrolytes Injection Type 1 USP) 1000mL Container Label

2B2544

NDC 0338-0221-04
Plasma-Lyte A
Injection pH 7.4
(Multiple Electrolytes Injection
Type 1 USP)

1000 mL
Each 100 mL contains 526 mg Sodium Chloride USP 502 mg Sodium Gluconate USP 368 mg Sodium Acetate Trihydrate USP 37 mg Potassium Chloride USP 30 mg Magnesium Chloride USP pH adjusted with Sodium Hydroxide pH 7.4 (6.5 to 8.0) mEq/L Sodium 140 Potassium 5 Magnesium 3 Chloride 98 Acetate 27 Gluconate 23 Osmolarity 294 mOsmol/L (calc) Sterile Nonpyrogenic Single dose container Additives may be incompatible Consult with pharmacist if available When introducing additives use aseptic technique Mix thoroughly Do not store Dosage Intravenously as directed by a physician See directions Cautions Squeeze and inspect inner bag which maintains product sterility Discard if leaks are found Must not be used in series connections Do not use unless solution is clear Rx Only Store unit in moisture barrier overwrap at room temperature (25°C/77°F) until ready to use Avoid excessive heat See insert VIAFLEX container PL 146 plastic BAXTER PLASMA-LYTE VIAFLEX and PL 146 are trademarks of Baxter International Inc For product information 1-800-933-0303 Baxter Baxter Healthcare Corporation Deerfield IL 60015 USA Made in USA

PLASMA-LYTE A
sodium chloride, sodium gluconate, sodium acetate, potassium chloride and magnesium chloride
Product Information

Product Type: HUMAN PRESCRIPTION DRUG
Item Code (Source): NDC:0338-0221
Route of Administration: INTRAVENOUS

Active Ingredient/Active Moiety

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Basis of Strength</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>SODIUM CHLORIDE (UNII: 451W47IQ8X) (SODIUM CATION - UNII:LYR4M0NH37, CHLORIDE ION - UNII:Q32ZN48698)</td>
<td>SODIUM CHLORIDE</td>
<td>526 mg in 100 mL</td>
</tr>
<tr>
<td>SODIUM GLUCONATE (UNII: R6Q3791S76) (GLUCONIC ACID - UNII:R4R8J0Q44B, SODIUM CATION - UNII:LYR4M0NH37)</td>
<td>SODIUM GLUCONATE</td>
<td>502 mg in 100 mL</td>
</tr>
<tr>
<td>SODIUM ACETATE (UNII: 4550K0SC9B) (ACETATE ION - UNII:S69DQM74SC, SODIUM CATION - UNII:LYR4M0NH37)</td>
<td>SODIUM ACETATE</td>
<td>368 mg in 100 mL</td>
</tr>
<tr>
<td>POTASSIUM CHLORIDE (UNII: 660YQ98I10) (POTASSIUM CATION - UNII:295053K152, CHLORIDE ION - UNII:Q32ZN48698)</td>
<td>POTASSIUM CHLORIDE</td>
<td>37 mg in 100 mL</td>
</tr>
<tr>
<td>MAGNESIUM CHLORIDE (UNII: 02F3473H9O) (MAGNESIUM CATION - UNII:T6V3LHY838, CHLORIDE ION - UNII:Q32ZN48698)</td>
<td>MAGNESIUM CHLORIDE</td>
<td>30 mg in 100 mL</td>
</tr>
</tbody>
</table>

Inactive Ingredients

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER (UNII: 059QF0KO0R)</td>
<td></td>
</tr>
<tr>
<td>SODIUM HYDROXIDE (UNII: 55X04QC32I)</td>
<td></td>
</tr>
</tbody>
</table>

Packaging

<table>
<thead>
<tr>
<th>#</th>
<th>Item Code</th>
<th>Package Description</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NDC:0338-0221-03</td>
<td>500 mL in 1 BAG; Type 0: Not a Combination Product</td>
<td>02/02/1979</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NDC:0338-0221-04</td>
<td>1000 mL in 1 BAG; Type 0: Not a Combination Product</td>
<td>02/02/1979</td>
<td></td>
</tr>
</tbody>
</table>

Marketing Information

<table>
<thead>
<tr>
<th>Marketing Category</th>
<th>Application Number or Monograph Citation</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDA</td>
<td>NDA017378</td>
<td>02/02/1979</td>
<td></td>
</tr>
</tbody>
</table>

Labeler

Labeler - Baxter Healthcare Corporation (005083209)

Establishment

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>ID/FEI</th>
<th>Business Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baxter Healthcare Corporation</td>
<td></td>
<td>059140764</td>
<td>ANALYSIS(0338-0221) , LABEL(0338-0221) , MANUFACTURE(0338-0221) , PACK(0338-0221) , STERILIZE(0338-0221)</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>ID/FEI</td>
<td>Business Operations</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Baxter Healthcare Corporation</td>
<td></td>
<td>194684502</td>
<td>ANALYSIS(0338-0221)</td>
</tr>
</tbody>
</table>

Revised: 8/2019

Baxter Healthcare Corporation