HIGHLIGHTS OF PRESCRIBING INFORMATION
These highlights do not include all the information needed to use VFEND safely and effectively. See full prescribing information for VFEND.

VFEND® (voriconazole) for injection, for intravenous use Initial U.S. Approval: 2002

RECENT MAJOR CHANGES

INDICATIONS AND USAGE
VFEND is an azole antifungal indicated for the treatment of adults and pediatric patients 2 years of age and older with:

- Invasive aspergillosis (1.1)
- Candidemia in non-neutropenics and other deep tissue Candida infections (1.2)
- Esophageal candidiasis (1.3)
- Serious fungal infections caused by Scedosporium apiospermum and Fusarium species including Fusarium solani, in patients intolerant of, or refractory to, other therapy (1.4)

DOSAGE AND ADMINISTRATION

Infections

<table>
<thead>
<tr>
<th>Infection</th>
<th>Loading Dose</th>
<th>Maintenance Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive Aspergillosis</td>
<td>Intravenous infusion 6 mg/kg every 12 hours for the first 24 hours</td>
<td>Oral 4 mg/kg every 12 hours</td>
</tr>
<tr>
<td>Candidemia in nonneutropenics and other deep tissue Candida infections</td>
<td>3–4 mg/kg every 12 hours</td>
<td>200 mg every 12 hours</td>
</tr>
<tr>
<td>Scedosporiosis and Fusariosis</td>
<td>4 mg/kg every 12 hours</td>
<td>200 mg every 12 hours</td>
</tr>
<tr>
<td>Esophageal Candidias</td>
<td>Not Evaluated</td>
<td>200 mg every 12 hours</td>
</tr>
</tbody>
</table>

- Adult patients weighing less than 40 kg: oral maintenance dose 100 mg or 150 mg every 12 hours
- **Hepatic Impairment**: Use half the maintenance dose in adult patients with mild to moderate hepatic impairment (Child-Pugh Class A and B) (2.5)
- **Renal Impairment**: Avoid intravenous administration in adult patients with moderate to severe renal impairment (creatinine clearance <50 mL/min) (2.6)
- **Dosage in Pediatric Patients 2 years of age and older (2.4)**
- For pediatric patients 2 to less than 12 years of age and 12 to 14 years of age weighing less than 50 kg see Table below.
For pediatric patients aged 12 to 14 years weighing greater than or equal to 50 kg and those aged 15 years and older regardless of body weight use adult dosage. (2.4)

Dosage adjustment of VFEND in pediatric patients with renal or hepatic impairment has not been established (2.5, 2.6)

See full prescribing information for instructions on reconstitution of VFEND lyophilized powder for intravenous use and important administration instructions (2.1, 2.6 2.7)

--- DOSE FORMS AND STRENGTHS ---

- **For Injection**: Lyophilized powder containing 200 mg of voriconazole and 3,200 mg of sulfobutyl ether betacyclodextrin sodium (SBEC); after reconstitution 10 mg/mL of voriconazole and 160 mg/mL of SBEC (3)

--- CONTRAINDICATIONS ---

- Hypersensitivity to voriconazole or its excipients (4)
 - Coadministration with cisapride, pimozide or quinidine, sirolimus due to risk of serious adverse reactions (4, 7)
 - Coadministration with rifampin, carbamazepine, long-acting barbiturates, efavirenz, ritonavir, rifabutin, ergot alkaloids, and St. John's Wort due to risk of loss of efficacy (4, 7)

--- WARNINGS AND PRECAUTIONS ---

- **Hepatic Toxicity**: Serious hepatic reactions reported. Evaluate liver function tests at start of and during VFEND therapy (5.1)
 - **Arrhythmias and QT Prolongation**: Correct potassium, magnesium and calcium prior to use; caution patients with proarrhythmic conditions (5.2)
 - **Infusion Related Reactions (including anaphylaxis)**: Stop the infusion (5.3)
 - **Visual Disturbances** (including optic neuritis and papilledema): Monitor visual function if treatment continues beyond 28 days (5.4)
 - **Serious Exfoliative Cutaneous Reactions**: Discontinue for exfoliative cutaneous reactions (5.5)
 - **Photosensitivity**: Avoid sunlight due to risk of photosensitivity (5.6)
 - **Embryo-Fetal Toxicity**: Voriconazole can cause fetal harm when administered to a pregnant woman. Inform pregnant patients of the potential hazard to the fetus. Advise females of reproductive potential to use effective contraception during treatment with VFEND (5.8, 8.1, 8.3)
 - **Skeletal Adverse Reactions**: Fluorosis and periostitis with long-term voriconazole therapy. Discontinue if these adverse reactions occur (5.11)
 - **Clinically Significant Drug Interactions**: Review patient’s concomitant medications (5.12, 7)

--- ADVERSE REACTIONS ---

- **Adult Patients**: The most common adverse reactions (incidence ≥2%) were visual disturbances, fever, nausea, rash, vomiting, chills, headache, liver function test abnormal, tachycardia, hallucinations (6)
 - **Pediatric Patients**: The most common adverse reactions (incidence ≥5%) were visual disturbances, pyrexia, vomiting, epistaxis, nausea, rash, abdominal pain, diarrhea, hypertension, hypokalemia, cough, headache, thrombocytopenia, ALT abnormal, hypotension, peripheral edema, hyperglycemia, tachycardia, dyspnea, hypocalcemia, hypophosphatemia, LFT abnormal, mucosal inflammation, photophobia, abdominal distention, constipation, dizziness, hallucinations, hemoptysis, hypoalbuminemia, hypomagnesemia, renal impairment, upper respiratory tract infection (6)

To report SUSPECTED ADVERSE REACTIONS, contact Pfizer, Inc. at 1-800-438-1985 or FDA at 1-800-FDA-1088 or www.fda.gov/medwatch.

--- DRUG INTERACTIONS ---

- **CYP3A4, CYP2C9, and CYP2C19 inhibitors and inducers**: Adjust VFEND dosage and monitor for adverse reactions or lack of efficacy (4, 7)
 - **VFEND may increase the concentrations and activity of drugs that are CYP3A4, CYP2C9 and CYP2C19 substrates. Reduce dosage of these other drugs and monitor for adverse reactions (4, 7)**
 - **Phenytoin or Efavirenz**: With co-administration, increase maintenance oral and intravenous dosage of VFEND (2.3, 2.7, 7)

--- USE IN SPECIFIC POPULATIONS ---

- **Pediatrics**: Safety and effectiveness in patients younger than 2 years has not been established (8.4)

See 17 for PATIENT COUNSELING INFORMATION and FDA-approved patient labeling.

Revised: 5/2019
FULL PRESCRIBING INFORMATION

1 INDICATIONS AND USAGE

1.1 Invasive Aspergillosis
VFEND is indicated in adults and pediatric patients (2 years of age and older) for the treatment of invasive aspergillosis (IA). In clinical trials, the majority of isolates recovered were Aspergillus fumigatus. There was a small number of cases of culture-proven disease due to species of Aspergillus other than A. fumigatus [see Clinical Studies (14.1, 14.5) and Microbiology (12.4)].

1.2 Candidemia in Non-neutropenic Patients and Other Deep Tissue Candida Infections
VFEND is indicated in adults and pediatric patients (2 years of age and older) for the treatment of candidemia in non-neutropenic patients and the following Candida infections: disseminated infections in skin and infections in abdomen, kidney, bladder wall, and wounds [see Clinical Studies (14.2, 14.5) and Microbiology (12.4)].

1.3 Esophageal Candidiasis
VFEND is indicated in adults and pediatric patients (2 years of age and older) for the treatment of esophageal candidiasis (EC) in adults and pediatric patients 2 years of age and older [see Clinical Studies (14.3, 14.5) and Microbiology (12.4)].

1.4 Scedosporiosis and Fusariosis
VFEND is indicated for the treatment of serious fungal infections caused by Scedosporium apiospermum (asexual form of Pseudallescheria boydii) and Fusarium spp. including Fusarium solani, in adults and pediatric patients (2 years of age and older) intolerant of, or refractory to, other therapy [see Clinical Studies (14.4) and Microbiology (12.4)].

1.5 Usage
Specimens for fungal culture and other relevant laboratory studies (including histopathology) should be obtained prior to therapy to isolate and identify causative organism(s). Therapy may be instituted before the results of the cultures and other laboratory studies are known. However, once these results become available, antifungal therapy should be adjusted accordingly.

2 DOSAGE AND ADMINISTRATION

2.1 Important Administration Instructions for Use in All Patients
VFEND I.V. for Injection requires reconstitution to 10 mg/mL and subsequent dilution to 5 mg/mL or less prior to administration as an infusion, at a maximum rate of 3 mg/kg per hour over 1 to 2 hours.

Administer diluted VFEND I.V. by intravenous infusion over 1 to 2 hours only. Do not administer as an IV bolus injection.

2.2 Use of VFEND I.V. With Other Parenteral Drug Products

Blood products and concentrated electrolytes

VFEND I.V. must not be infused concomitantly with any blood product or short-term infusion of concentrated electrolytes, even if the two infusions are running in separate intravenous lines (or cannulas). Electrolyte disturbances such as hypokalemia, hypomagnesemia and hypocalcemia should be corrected prior to initiation of and during VFEND therapy [see Warnings and Precautions (5.9)].

Intravenous solutions containing (non-concentrated) electrolytes

VFEND I.V. can be infused at the same time as other intravenous solutions containing (non-concentrated) electrolytes, but must be infused through a separate line.

Total parenteral nutrition (TPN)

VFEND I.V. can be infused at the same time as total parenteral nutrition, but must be infused in a separate line. If infused through a multiple-lumen catheter, TPN needs to be administered using a different port from the one used for VFEND I.V.

2.3 Recommended Dosing Regimen in Adults

Invasive aspergillosis and serious fungal infections due to *Fusarium* spp. and *Scedosporium apiospermum*

See Table 1. Therapy must be initiated with the specified loading dose regimen of intravenous VFEND on Day 1 followed by the recommended maintenance dose (RMD) regimen. Intravenous treatment should be continued for at least 7 days. Once the patient has clinically improved and can tolerate medication given by mouth, the oral tablet form or oral suspension form of VFEND may be utilized. The recommended oral maintenance dose of 200 mg achieves a voriconazole exposure similar to 3 mg/kg intravenously; a 300 mg oral dose achieves an exposure similar to 4 mg/kg intravenously. Switching between the intravenous and oral formulations is appropriate because of the high bioavailability of the oral formulation in adults [see Clinical Pharmacology (12)].

Candidemia in non-neutropenic patients and other deep tissue *Candida* infections

See Table 1. Patients should be treated for at least 14 days following resolution of symptoms or following last positive culture, whichever is longer.

Esophageal Candidiasis

See Table 1. Patients should be treated for a minimum of 14 days and for at least 7 days following resolution of symptoms.

<table>
<thead>
<tr>
<th>Table 1: Recommended Dosing Regimen (Adults)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Invasive Aspergillosis§</td>
</tr>
<tr>
<td>Candidemia in nonneutropenic patients and other deep tissue Candida infections</td>
</tr>
</tbody>
</table>
Method for Adjusting the Dosing Regimen in Adults

If patient's response is inadequate, the oral maintenance dose may be increased from 200 mg every 12 hours (similar to 3 mg/kg intravenously every 12 hours) to 300 mg every 12 hours (similar to 4 mg/kg intravenously every 12 hours). For adult patients weighing less than 40 kg, the oral maintenance dose may be increased from 100 mg every 12 hours to 150 mg every 12 hours. If patient is unable to tolerate 300 mg orally every 12 hours, reduce the oral maintenance dose by 50 mg steps to a minimum of 200 mg every 12 hours (or to 100 mg every 12 hours for adult patients weighing less than 40 kg).

If patient is unable to tolerate 4 mg/kg intravenously every 12 hours, reduce the intravenous maintenance dose to 3 mg/kg every 12 hours.

2.4 Recommended Dosing Regimen in Pediatric Patients

The recommended dosing regimen for pediatric patients 2 to less than 12 years of age and 12 to 14 years of age with body weight less than 50 kg is shown in Table 2. For pediatric patients 12 to 14 years of age with a body weight greater than or equal to 50 kg and those 15 years of age and above regardless of body weight, administer the adult dosing regimen of VFEND [see Dosage and Administration (2.3)].

Table 2: Recommended Dosing Regimen for Pediatric Patients 2 to less than 12 years of age and 12 to 14 years of age with body weight less than 50 kg

<table>
<thead>
<tr>
<th>Condition</th>
<th>Loading Dose</th>
<th>Maintenance Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intravenous infusion</td>
<td>Intravenous infusion</td>
</tr>
<tr>
<td>Invasive Aspergillosis†</td>
<td>9 mg/kg every 12 hours</td>
<td>8 mg/kg every 12 hours</td>
</tr>
<tr>
<td>Candidemia in nonneutropenics and other deep tissue Candida infections‡</td>
<td>9 mg/kg every 12 hours for the first 24 hours</td>
<td>8 mg/kg every 12 hours after the first 24 hours</td>
</tr>
<tr>
<td>Scedosporiosis and Fusariosis</td>
<td>6 mg/kg every 12 hours</td>
<td>4 mg/kg every 12 hours</td>
</tr>
<tr>
<td>Esophageal</td>
<td>4 mg/kg every 12 hours</td>
<td>9 mg/kg every 12 hours</td>
</tr>
</tbody>
</table>
Esophageal Candidiasis

| Not Evaluated | 4 mg/kg every 12 hours | (maximum dose of 350 mg every 12 hours) |

* Based on a population pharmacokinetic analysis in 112 immunocompromised pediatric patients aged 2 to less than 12 years of age and 26 immunocompromised pediatric patients aged 12 to less than 17 years of age.

† In the Phase 3 clinical trials, patients with IA received intravenous (IV) treatment for at least 6 weeks and up to a maximum of 12 weeks. Patients received IV treatment for at least the first 7 days of therapy and then could be switched to oral VFEND therapy.

‡ Study treatment for primary or salvage invasive candidiasis and candidemia (ICC) or EC consisted of intravenous VFEND, with an option to switch to oral therapy after at least 5 days of IV therapy, based on subjects meeting switch criteria. For subjects with primary or salvage ICC, VFEND was administered for at least 14 days after the last positive culture. A maximum of 42 days of treatment was permitted. Patients with primary or salvage EC were treated for at least 7 days after the resolution of clinical signs and symptoms. A maximum of 42 days of treatment was permitted.

Initiate therapy with an intravenous infusion regimen. Consider an oral regimen only after there is a significant clinical improvement. Note that an 8 mg/kg intravenous dose will provide voriconazole exposure approximately 2-fold higher than a 9 mg/kg oral dose.

The oral dose recommendation for children is based on studies in which VFEND was administered as the powder for oral suspension formulation. Bioequivalence between the VFEND powder for oral suspension and VFEND tablets has not been investigated in a pediatric population.

Oral bioavailability may be limited in pediatric patients 2 to 12 years with malabsorption and very low body weight for age. In that case, intravenous VFEND administration is recommended.

Method for Adjusting the Dosing Regimen in Pediatric Patients

Pediatric Patients 2 to less than 12 years of age and 12 to 14 years of age with body weight less than 50 kg

If patient response is inadequate and the patient is able to tolerate the initial intravenous maintenance dose, the maintenance dose may be increased by 1 mg/kg steps. If patient response is inadequate and the patient is able to tolerate the oral maintenance dose, the dose may be increased by 1 mg/kg steps or 50 mg steps to a maximum of 350 g every 12 hours. If patients are unable to tolerate the initial intravenous maintenance dose, reduce the dose by 1 mg/kg steps. If patients are unable to tolerate the oral maintenance dose, reduce the dose by 1 mg/kg or 50 mg steps.

Pediatric patients 12 to 14 years of age weighing greater than or equal to 50 kg and 15 years of age and older regardless of body weight:

Use the optimal method for titrating dosage recommended for adults [see Dosage and Administration (2.3)].

2.5 Dosage Modifications in Patients With Hepatic Impairment

Adults

The maintenance dose of VFEND should be reduced in adult patients with mild to moderate hepatic impairment, Child-Pugh Class A and B. There are no PK data to allow for dosage adjustment recommendations in patients with severe hepatic impairment (Child-Pugh Class C).

Duration of therapy should be based on the severity of the patient's underlying disease, recovery from immunosuppression, and clinical response.

Adult patients with baseline liver function tests (ALT, AST) of up to 5 times the upper limit of normal (ULN) were included in the clinical program. Dose adjustments are not necessary for adult patients with this degree of abnormal liver function, but continued monitoring of liver function tests for further elevations is recommended [see Warnings and Precautions (5.1)].
It is recommended that the recommended VFEND loading dose regimens be used, but that the maintenance dose be halved in adult patients with mild to moderate hepatic cirrhosis (Child-Pugh Class A and B) [see Clinical Pharmacology (12.3)].

VFEND has not been studied in adult patients with severe hepatic cirrhosis (Child-Pugh Class C) or in patients with chronic hepatitis B or chronic hepatitis C disease. VFEND has been associated with elevations in liver function tests and with clinical signs of liver damage, such as jaundice. VFEND should only be used in patients with severe hepatic impairment if the benefit outweighs the potential risk. Patients with hepatic impairment must be carefully monitored for drug toxicity.

Pediatric Patients

Dosage adjustment of VFEND in pediatric patients with hepatic impairment has not been established [see Use in Specific Populations (8.4)].

2.6 Dosage Modifications in Patients With Renal Impairment

Adult Patients

The pharmacokinetics of orally administered VFEND are not significantly affected by renal impairment. Therefore, no adjustment is necessary for oral dosing in patients with mild to severe renal impairment [see Clinical Pharmacology (12.3)].

In patients with moderate or severe renal impairment (creatinine clearance <50 mL/min) who are receiving an intravenous infusion of VFEND, accumulation of the intravenous vehicle, SBECD, occurs. Oral voriconazole should be administered to these patients, unless an assessment of the benefit/risk to the patient justifies the use of intravenous VFEND. Serum creatinine levels should be closely monitored in these patients, and, if increases occur, consideration should be given to changing to oral VFEND therapy [see Warnings and Precautions (5.7)].

Voriconazole is hemodialyzed with clearance of 121 mL/min. The intravenous vehicle, SBECD, is hemodialyzed with clearance of 55 mL/min. A 4-hour hemodialysis session does not remove a sufficient amount of voriconazole to warrant dose adjustment.

Pediatric Patients

Dosage adjustment of VFEND in pediatric patients with renal impairment has not been established [see Use in Specific Populations (8.4)].

2.7 Dosage Adjustment When Co-Administered With Phenytoin or Efavirenz

The maintenance dose of voriconazole should be increased when co-administered with phenytoin or efavirenz. Use the optimal method for titrating dosage [see Drug Interactions (7) and Dosage and Administration (2.3)].

2.8 Preparation and Intravenous Administration of VFEND for Injection

Reconstitution

The powder is reconstituted with 19 mL of Water For Injection to obtain an extractable volume of 20 mL of clear concentrate containing 10 mg/mL of voriconazole. It is recommended that a standard 20 mL (non-automated) syringe be used to ensure that the exact amount (19.0 mL) of Water for Injection is dispensed. Discard the vial if a vacuum does not pull the diluent into the vial. Shake the vial until all the powder is dissolved.

Dilution

VFEND must be infused over 1 to 3 hours, at a concentration of 5 mg/mL or less. Therefore, the required volume of the 10 mg/mL VFEND concentrate should be further diluted as follows (appropriate diluents listed below):

1. Calculate the volume of 10 mg/mL VFEND concentrate required based on the patient's weight (see
2. In order to allow the required volume of VFEND concentrate to be added, withdraw and discard at least an equal volume of diluent from the infusion bag or bottle to be used. The volume of diluent remaining in the bag or bottle should be such that when the 10 mg/mL VFEND concentrate is added, the final concentration is not less than 0.5 mg/mL nor greater than 5 mg/mL.

3. Using a suitable size syringe and aseptic technique, withdraw the required volume of VFEND concentrate from the appropriate number of vials and add to the infusion bag or bottle. **Discard Partially Used Vials.**

The final VFEND solution must be infused over 1 to 3 hours at a maximum rate of 3 mg/kg per hour.

<table>
<thead>
<tr>
<th>Body Weight (kg)</th>
<th>Volume of VFEND Concentrate (10 mg/mL) required for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 mg/kg dose (number of vials)</td>
</tr>
<tr>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>9 mL (1)</td>
</tr>
<tr>
<td>35</td>
<td>10.5 mL (1)</td>
</tr>
<tr>
<td>40</td>
<td>12 mL (1)</td>
</tr>
<tr>
<td>45</td>
<td>13.5 mL (1)</td>
</tr>
<tr>
<td>50</td>
<td>15 mL (1)</td>
</tr>
<tr>
<td>55</td>
<td>16.5 mL (1)</td>
</tr>
<tr>
<td>60</td>
<td>18 mL (1)</td>
</tr>
<tr>
<td>65</td>
<td>19.5 mL (1)</td>
</tr>
<tr>
<td>70</td>
<td>21 mL (2)</td>
</tr>
<tr>
<td>75</td>
<td>22.5 mL (2)</td>
</tr>
<tr>
<td>80</td>
<td>24 mL (2)</td>
</tr>
<tr>
<td>85</td>
<td>25.5 mL (2)</td>
</tr>
<tr>
<td>90</td>
<td>27 mL (2)</td>
</tr>
<tr>
<td>95</td>
<td>28.5 mL (2)</td>
</tr>
<tr>
<td>100</td>
<td>30 mL (2)</td>
</tr>
</tbody>
</table>

VFEND I.V. for Injection is a single-dose unpreserved sterile lyophile. Therefore, from a microbiological point of view, once reconstituted, the product should be used immediately. If not used immediately, in-use storage times and conditions prior to use are the responsibility of the user and should not be longer than 24 hours at 2°C to 8°C (36°F to 46°F). This medicinal product is for single use only and any unused solution should be discarded. Only clear solutions without particles should be used.

The reconstituted solution can be diluted with:

- 0.9% Sodium Chloride USP
- Lactated Ringers USP
- 5% Dextrose and Lactated Ringers USP
- 5% Dextrose and 0.45% Sodium Chloride USP
- 5% Dextrose USP
- 5% Dextrose and 20 mEq Potassium Chloride USP
- 0.45% Sodium Chloride USP
5% Dextrose and 0.9% Sodium Chloride USP

The compatibility of VFEND I.V. with diluents other than those described above is unknown (see Incompatibilities below).

Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

Incompatibilities

VFEND I.V. must not be diluted with 4.2% Sodium Bicarbonate Infusion. The mildly alkaline nature of this diluent caused slight degradation of VFEND after 24 hours storage at room temperature. Although refrigerated storage is recommended following reconstitution, use of this diluent is not recommended as a precautionary measure. Compatibility with other concentrations is unknown.

3 DOSAGE FORMS AND STRENGTHS

Powder for Solution for Injection

VFEND I.V. for Injection is supplied in a single-dose vial as a sterile lyophilized powder equivalent to 200 mg voriconazole and 3,200 mg sulfobutyl ether beta-cyclodextrin sodium (SBECD).

4 CONTRAINDICATIONS

- VFEND is contraindicated in patients with known hypersensitivity to voriconazole or its excipients. There is no information regarding cross-sensitivity between VFEND (voriconazole) and other azole antifungal agents. Caution should be used when prescribing VFEND to patients with hypersensitivity to other azoles.
- Coadministration of cisapride, pimozide or quinidine with VFEND is contraindicated because increased plasma concentrations of these drugs can lead to QT prolongation and rare occurrences of *torsade de pointes* [see Drug Interactions (7) and Clinical Pharmacology (12.3)].
- Coadministration of VFEND with sirolimus is contraindicated because VFEND significantly increases sirolimus concentrations [see Drug Interactions (7) and Clinical Pharmacology (12.3)].
- Coadministration of VFEND with rifampin, carbamazepine and long-acting barbiturates is contraindicated because these drugs are likely to decrease plasma voriconazole concentrations significantly [see Drug Interactions (7) and Clinical Pharmacology (12.3)].
- Coadministration of standard doses of voriconazole with efavirenz doses of 400 mg every 24 hours or higher is contraindicated, because efavirenz significantly decreases plasma voriconazole concentrations in healthy subjects at these doses. Voriconazole also significantly increases efavirenz plasma concentrations [see Drug Interactions (7) and Clinical Pharmacology (12.3)].
- Coadministration of VFEND with high-dose ritonavir (400 mg every 12 hours) is contraindicated because ritonavir (400 mg every 12 hours) significantly decreases plasma voriconazole concentrations. Coadministration of voriconazole and low-dose ritonavir (100 mg every 12 hours) should be avoided, unless an assessment of the benefit/risk to the patient justifies the use of voriconazole [see Drug Interactions (7) and Clinical Pharmacology (12.3)].
- Coadministration of VFEND with rifabutin is contraindicated since VFEND significantly increases rifabutin plasma concentrations and rifabutin also significantly decreases voriconazole plasma concentrations [see Drug Interactions (7) and Clinical Pharmacology (12.3)].
- Coadministration of VFEND with ergot alkaloids (ergotamine and dihydroergotamine) is contraindicated because VFEND may increase the plasma concentration of ergot alkaloids, which may lead to ergotism [see Drug Interactions (7) and Clinical Pharmacology (12.3)].
- Coadministration of VFEND with St. John's Wort is contraindicated because this herbal supplement may decrease voriconazole plasma concentration [see Drug Interactions (7) and Clinical Pharmacology (12.3)].
5 WARNINGS AND PRECAUTIONS

5.1 Hepatic Toxicity

In clinical trials, there have been uncommon cases of serious hepatic reactions during treatment with VFEND (including clinical hepatitis, cholestasis and fulminant hepatic failure, including fatalities). Instances of hepatic reactions were noted to occur primarily in patients with serious underlying medical conditions (predominantly hematological malignancy). Hepatic reactions, including hepatitis and jaundice, have occurred among patients with no other identifiable risk factors. Liver dysfunction has usually been reversible on discontinuation of therapy [see Adverse Reactions (6.1)].

A higher frequency of liver enzyme elevations was observed in the pediatric population [see Adverse Reactions (6.1)]. Hepatic function should be monitored in both adult and pediatric patients.

Measure serum transaminase levels and bilirubin at the initiation of VFEND therapy and monitor at least weekly for the first month of treatment. Monitoring frequency can be reduced to monthly during continued use if no clinically significant changes are noted. If liver function tests become markedly elevated compared to baseline, VFEND should be discontinued unless the medical judgment of the benefit/risk of the treatment for the patient justifies continued use [see Dosage and Administration (2.5) and Adverse Reactions (6.1)].

5.2 Arrhythmias and QT Prolongation

Some azoles, including VFEND, have been associated with prolongation of the QT interval on the electrocardiogram. During clinical development and post-marketing surveillance, there have been rare cases of arrhythmias, (including ventricular arrhythmias such as torsade de pointes), cardiac arrests and sudden deaths in patients taking voriconazole. These cases usually involved seriously ill patients with multiple confounding risk factors, such as history of cardiotoxic chemotherapy, cardiomyopathy, hypokalemia and concomitant medications that may have been contributory.

VFEND should be administered with caution to patients with potentially proarrhythmic conditions, such as:
- Congenital or acquired QT prolongation
- Cardiomyopathy, in particular when heart failure is present
- Sinus bradycardia
- Existing symptomatic arrhythmias
- Concomitant medicinal product that is known to prolong QT interval [see Contraindications (4), Drug Interactions (7), and Clinical Pharmacology (12.3)]

Rigorous attempts to correct potassium, magnesium and calcium should be made before starting and during voriconazole therapy [see Clinical Pharmacology (12.3)].

5.3 Infusion Related Reactions

During infusion of the intravenous formulation of VFEND in healthy subjects, anaphylactoid-type reactions, including flushing, fever, sweating, tachycardia, chest tightness, dyspnea, faintness, nausea, pruritus and rash, have occurred uncommonly. Symptoms appeared immediately upon initiating the infusion. Consideration should be given to stopping the infusion should these reactions occur.

5.4 Visual Disturbances

The effect of VFEND on visual function is not known if treatment continues beyond 28 days. There have been post-marketing reports of prolonged visual adverse events, including optic neuritis and papilledema. If treatment continues beyond 28 days, visual function including visual acuity, visual field, and color perception should be monitored [see Adverse Reactions (6.2)].

5.5 Serious Exfoliative Cutaneous Reactions
Serious exfoliative cutaneous reactions, such as Stevens-Johnson syndrome, have been reported during treatment with VFEND. If a patient develops an exfoliative cutaneous reaction, VFEND should be discontinued.

5.6 Photosensitivity

VFEND has been associated with photosensitivity skin reaction. Patients, including pediatric patients, should avoid exposure to direct sunlight during VFEND treatment and should use measures such as protective clothing and sunscreen with high sun protection factor (SPF). If phototoxic reactions occur, the patient should be referred to a dermatologist and VFEND discontinuation should be considered. If VFEND is continued despite the occurrence of phototoxicity-related lesions, dermatologic evaluation should be performed on a systematic and regular basis to allow early detection and management of premalignant lesions. Squamous cell carcinoma of the skin and melanoma have been reported during long-term VFEND therapy in patients with photosensitivity skin reactions. If a patient develops a skin lesion consistent with premalignant skin lesions, squamous cell carcinoma or melanoma, VFEND should be discontinued. In addition, VFEND has been associated with photosensitivity related skin reactions such as pseudoporphyria, cheilitis, and cutaneous lupus erythematosus. Patients should avoid strong, direct sunlight during VFEND therapy.

The frequency of phototoxicity reactions is higher in the pediatric population. Because squamous cell carcinoma has been reported in patients who experience photosensitivity reactions, stringent measures for photoprotection are warranted in children. In children experiencing photoaging injuries such as lentigines or ephelides, sun avoidance and dermatologic follow-up are recommended even after treatment discontinuation.

5.7 Renal Toxicity

Acute renal failure has been observed in patients undergoing treatment with VFEND. Patients being treated with voriconazole are likely to be treated concomitantly with nephrotoxic medications and may have concurrent conditions that may result in decreased renal function.

Patients should be monitored for the development of abnormal renal function. This should include laboratory evaluation of serum creatinine [see Clinical Pharmacology (12.3) and Dosage and Administration (2.6)].

5.8 Embryo-Fetal Toxicity

Voriconazole can cause fetal harm when administered to a pregnant woman.

In animals, voriconazole administration was associated with fetal malformations, embryotoxicity, increased gestational length, dystocia and embryomortality [see Use in Specific Populations (8.1)].

If VFEND is used during pregnancy, or if the patient becomes pregnant while taking VFEND, inform the patient of the potential hazard to the fetus. Advise females of reproductive potential to use effective contraception during treatment with VFEND [see Use in Specific Populations (8.3)].

5.9 Laboratory Tests

Electrolyte disturbances such as hypokalemia, hypomagnesemia and hypocalcemia should be corrected prior to initiation of and during VFEND therapy.

Patient management should include laboratory evaluation of renal (particularly serum creatinine) and hepatic function (particularly liver function tests and bilirubin).

5.10 Pancreatitis

Pancreatitis has been observed in patients undergoing treatment with VFEND [see Adverse Reactions (6.1, 6.2)]. Patients with risk factors for acute pancreatitis (e.g., recent chemotherapy, hematopoietic stem cell transplantation [HSCT]) should be monitored for the development of pancreatitis during
VFEND treatment.

5.11 Skeletal Adverse Reactions
Fluorosis and periostitis have been reported during long-term VFEND therapy. If a patient develops skeletal pain and radiologic findings compatible with fluorosis or periostitis, VFEND should be discontinued [see Adverse Reactions (6.2)].

5.12 Clinically Significant Drug Interactions
See Table 10 for a listing of drugs that may significantly alter voriconazole concentrations. Also, see Table 11 for a listing of drugs that may interact with voriconazole resulting in altered pharmacokinetics or pharmacodynamics of the other drug [see Contraindications (4) and Drug Interactions (7)].

6 ADVERSE REACTIONS
The following serious adverse reactions are described elsewhere in the labeling:
Hepatic Toxicity [see Warnings and Precautions (5.1)]
Arrhythmias and QT Prolongation [see Warnings and Precautions (5.2)]
Infusion Related Reactions [see Warnings and Precautions (5.3)]
Visual Disturbances [see Warnings and Precautions (5.4)]
Serious Exfoliative Cutaneous Reactions [see Warnings and Precautions (5.5)]
Photosensitivity [see Warnings and Precautions (5.6)]
Renal Toxicity [see Warnings and Precautions (5.7)]

6.1 Clinical Trials Experience
Because clinical trials are conducted under widely varying conditions, adverse reaction rates observed in clinical trials of a drug cannot be directly compared to rates in the clinical trials of another drug and may not reflect the rates observed in practice.

Clinical Trials Experience in Adults
Overview
The most frequently reported adverse reactions (see Table 4) in the adult therapeutic trials were visual disturbances (18.7%), fever (5.7%), nausea (5.4%), rash (5.3%), vomiting (4.4%), chills (3.7%), headache (3.0%), liver function test increased (2.7%), tachycardia (2.4%), hallucinations (2.4%). The adverse reactions which most often led to discontinuation of voriconazole therapy were elevated liver function tests, rash, and visual disturbances [see Warning and Precautions (5.1, 5.4) and Adverse Reactions (6.1)].

The data described in Table 4 reflect exposure to voriconazole in 1655 patients in nine therapeutic studies. This represents a heterogeneous population, including immunocompromised patients, e.g., patients with hematological malignancy or HIV and non-neutropenic patients. This subgroup does not include healthy subjects and patients treated in the compassionate use and non-therapeutic studies. This patient population was 62% male, had a mean age of 46 years (range 11–90, including 51 patients aged 12–18 years), and was 78% White and 10% Black. Five hundred sixty one patients had a duration of voriconazole therapy of greater than 12 weeks, with 136 patients receiving voriconazole for over six months. Table 4 includes all adverse reactions which were reported at an incidence of ≥2% during voriconazole therapy in the all therapeutic studies population, studies 307/602 and 608 combined, or study 305, as well as events of concern which occurred at an incidence of <2%.

In study 307/602, 381 patients (196 on voriconazole, 185 on amphotericin B) were treated to compare voriconazole to amphotericin B followed by other licensed antifungal therapy (OLAT) in the primary
treatment of patients with acute IA. The rate of discontinuation from voriconazole study medication due to adverse events was 21.4% (42/196 patients). In study 608, 403 patients with candidemia were treated to compare voriconazole (272 patients) to the regimen of amphotericin B followed by fluconazole (131 patients). The rate of discontinuation from voriconazole study medication due to adverse events was 19.5% out of 272 patients. Study 305 evaluated the effects of oral voriconazole (200 patients) and oral fluconazole (191 patients) in the treatment of EC. The rate of discontinuation from voriconazole study medication in Study 305 due to adverse events was 7% (14/200 patients). Laboratory test abnormalities for these studies are discussed under Clinical Laboratory Values below.

Table 4: Treatment Emergent Adverse Events Rate ≥ 2% on Voriconazole or Adverse Events of Concern in Therapeutic Studies Population, Studies 307/602–608 Combined, or Study 305. Possibly Related to Therapy or Causality Unknown*

<table>
<thead>
<tr>
<th></th>
<th>Therapeutic Studies†</th>
<th>Studies 307/602 and 608 (IV/oral therapy)</th>
<th>Study 305 (oral therapy)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Voriconazole N=1655</td>
<td>Voriconazole N=468</td>
<td>Ampho B‡ N=185</td>
</tr>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>Special Senses§</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal vision</td>
<td>310 (18.7)</td>
<td>63 (13.5)</td>
<td>1 (0.5)</td>
</tr>
<tr>
<td>Photophobia</td>
<td>37 (2.2)</td>
<td>8 (1.7)</td>
<td>0</td>
</tr>
<tr>
<td>Chromatopsia</td>
<td>20 (1.2)</td>
<td>2 (0.4)</td>
<td>0</td>
</tr>
<tr>
<td>Body as a Whole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fever</td>
<td>94 (5.7)</td>
<td>8 (1.7)</td>
<td>25 (13.5)</td>
</tr>
<tr>
<td>Chills</td>
<td>61 (3.7)</td>
<td>1 (0.2)</td>
<td>36 (19.5)</td>
</tr>
<tr>
<td>Headache</td>
<td>49 (3.0)</td>
<td>9 (1.9)</td>
<td>8 (4.3)</td>
</tr>
<tr>
<td>Cardiovascular System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachycardia</td>
<td>39 (2.4)</td>
<td>6 (1.3)</td>
<td>5 (2.7)</td>
</tr>
<tr>
<td>Digestive System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>89 (5.4)</td>
<td>18 (3.8)</td>
<td>29 (15.7)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>72 (4.4)</td>
<td>15 (3.2)</td>
<td>18 (9.7)</td>
</tr>
<tr>
<td>Liver function tests abnormal</td>
<td>45 (2.7)</td>
<td>15 (3.2)</td>
<td>4 (2.2)</td>
</tr>
<tr>
<td>Cholestatic jaundice</td>
<td>17 (1.0)</td>
<td>8 (1.7)</td>
<td>0</td>
</tr>
<tr>
<td>Metabolic and Nutritional Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkaline</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VFEND treatment-related visual disturbances are common. In therapeutic trials, approximately 21% of patients experienced abnormal vision, color vision change and/or photophobia. Visual disturbances may be associated with higher plasma concentrations and/or doses.

The mechanism of action of the visual disturbance is unknown, although the site of action is most likely to be within the retina. In a study in healthy subjects investigating the effect of 28-day treatment with voriconazole on retinal function, VFEND caused a decrease in the electroretinogram (ERG) waveform amplitude, a decrease in the visual field, and an alteration in color perception. The ERG measures electrical currents in the retina. These effects were noted early in administration of VFEND and continued through the course of study drug treatment. Fourteen days after the end of dosing, ERG, visual fields and color perception returned to normal [see Warnings and Precautions (5.4)].

Dermatological Reactions

Dermatological reactions were common in patients treated with VFEND. The mechanism underlying these dermatologic adverse events remains unknown.

Serious cutaneous reactions, including Stevens-Johnson syndrome, toxic epidermal necrolysis and erythema multiforme have been reported during treatment with VFEND [see Warnings and Precautions (5.5)].
VFEND has also been associated with additional photosensitivity related skin reactions such as pseudoporphyria, cheilitis, and cutaneous lupus erythematosus [see Warnings and Precautions (5.6)].

Less Common Adverse Reactions

The following adverse reactions occurred in <2% of all voriconazole-treated patients in all therapeutic studies (N=1655). This listing includes events where a causal relationship to voriconazole cannot be ruled out or those which may help the physician in managing the risks to the patients. The list does not include events included in Table 4 above and does not include every event reported in the voriconazole clinical program.

Body as a Whole: abdominal pain, abdomen enlarged, allergic reaction, anaphylactoid reaction [see Warnings and Precautions (5.3)], ascites, asthenia, back pain, chest pain, cellulitis, edema, face edema, flank pain, flu syndrome, graft versus host reaction, granuloma, infection, bacterial infection, fungal infection, injection site pain, injection site infection/inflammation, mucous membrane disorder, multi-organ failure, pain, pelvic pain, peritonitis, sepsis, substernal chest pain.

Cardiovascular: atrial arrhythmia, atrial fibrillation, AV block complete, bigeminy, bradycardia, bundle branch block, cardiomegaly, cardiomyopathy, cerebral hemorrhage, cerebral ischemia, cerebrovascular accident, congestive heart failure, deep thrombophlebitis, endocarditis, extrasystoles, heart arrest, hypertension, hypotension, myocardial infarction, nodal arrhythmia, palpitation, phlebitis, postural hypotension, pulmonary embolus, QT interval prolonged, supraventricular extrasystoles, supraventricular tachycardia, syncope, thrombophlebitis, vasodilatation, ventricular arrhythmia, ventricular fibrillation, ventricular tachycardia (including torsade de pointes) [see Warnings and Precautions (5.2)].

Digestive: anorexia, cheilitis, cholecystitis, cholelithiasis, constipation, diarrhea, duodenal ulcer perforation, duodenitis, dyspepsia, dysphagia, dry mouth, esophageal ulcer, esophagitis, flatulence, gastroenteritis, gastrointestinal hemorrhage, GGT/LDH elevated, gingivitis, glossitis, gum hemorrhage, gum hyperplasia, hematemesis, hepatic coma, hepatic failure, hepatitis, intestinal perforation, intestinal ulcer, jaundice, enlarged liver, melena, mouth ulceration, pancreatitis, parotid gland enlargement, periodontitis, proctitis, pseudomembranous colitis, rectal disorder, rectal hemorrhage, stomach ulcer, stomatitis, tongue edema.

Endocrine: adrenal cortex insufficiency, diabetes insipidus, hyperthyroidism, hypothyroidism.

Hemic and Lymphatic: agranulocytosis, anemia (macrocytic, megaloblastic, microcytic, normocytic), aplastic anemia, hemolytic anemia, bleeding time increased, cyanosis, DIC, ecchymosis, eosinophilia, hypervolemia, leukopenia, lymphadenopathy, lymphangitis, marrow depression, pancytopenia, petechia, purpura, enlarged spleen, thrombocytopenia, thrombotic thrombocytopenic purpura.

Metabolic and Nutritional: albuminuria, BUN increased, creatine phosphokinase increased, edema, glucose tolerance decreased, hypercalcemia, hypercholesteremia, hyperglycemia, hyperkalemia, hypermagnesemia, hypernatremia, hypocalcemia, hypoglycemia, hypomagnesemia, hyponatremia, hypophosphatemia, peripheral edema, uremia.

Musculoskeletal: arthralgia, arthritis, bone necrosis, bone pain, leg cramps, myalgia, myasthenia, myopathy, osteomalacia, osteoporosis.

Respiratory System: cough increased, dyspnea, epistaxis, hemoptyis, hypoxia, lung edema, pharyngitis, pleural effusion, pneumonia, respiratory disorder, respiratory distress syndrome, respiratory tract infection, rhinitis, sinusitis, voice alteration.
Skin and Appendages: alopecia, angioedema, contact dermatitis, discoid lupus erythematosis, eczema, erythema multiforme, exfoliative dermatitis, fixed drug eruption, furunculosis, herpes simplex, maculopapular rash, melanoma, melanosis, photosensitivity skin reaction, pruritus, pseudoporphyria, psoriasis, skin discoloration, skin disorder, skin dry, Stevens-Johnson syndrome, squamous cell carcinoma, sweating, toxic epidermal necrolysis, urticaria.

Special Senses: abnormality of accommodation, blepharitis, color blindness, conjunctivitis, corneal opacity, deafness, ear pain, eye pain, eye hemorrhage, dry eyes, hypoacusis, keratitis, keratoconjunctivitis, mydriasis, night blindness, optic atrophy, optic neuritis, otitis externa, papilledema, retinal hemorrhage, retinitis, scleritis, taste loss, taste perversion, tinnitus, uveitis, visual field defect.

Urogenital: anuria, blighted ovum, creatinine clearance decreased, dysmenorrhea, dysuria, epididymitis, glycosuria, hemorrhagic cystitis, hematuria, hydronephrosis, impotence, kidney pain, kidney tubular necrosis, metrorrhagia, nephritis, nephrosis, oliguria, scrotal edema, urinary incontinence, urinary retention, urinary tract infection, uterine hemorrhage, vaginal hemorrhage.

Clinical Laboratory Values in Adults

The overall incidence of transaminase increases >3× upper limit of normal (not necessarily comprising an adverse reaction) was 17.7% (268/1514) in adult subjects treated with VFEND for therapeutic use in pooled clinical trials. Increased incidence of liver function test abnormalities may be associated with higher plasma concentrations and/or doses. The majority of abnormal liver function tests either resolved during treatment without dose adjustment or resolved following dose adjustment, including discontinuation of therapy.

VFEND has been infrequently associated with cases of serious hepatic toxicity including cases of jaundice and rare cases of hepatitis and hepatic failure leading to death. Most of these patients had other serious underlying conditions.

Liver function tests should be evaluated at the start of and during the course of VFEND therapy. Patients who develop abnormal liver function tests during VFEND therapy should be monitored for the development of more severe hepatic injury. Patient management should include laboratory evaluation of hepatic function (particularly liver function tests and bilirubin). Discontinuation of VFEND must be considered if clinical signs and symptoms consistent with liver disease develop that may be attributable to VFEND [see Warnings and Precautions (5.1)].

Acute renal failure has been observed in severely ill patients undergoing treatment with VFEND. Patients being treated with VFEND are likely to be treated concomitantly with nephrotoxic medications and may have concurrent conditions that can result in decreased renal function. It is recommended that patients are monitored for the development of abnormal renal function. This should include laboratory evaluation of serum creatinine.

Tables 5 to 7 show the number of patients with hypokalemia and clinically significant changes in renal and liver function tests in three randomized, comparative multicenter studies. In study 305, patients with EC were randomized to either oral VFEND or oral fluconazole. In study 307/602, patients with definite or probable IA were randomized to either VFEND or amphotericin B therapy. In study 608, patients with candidemia were randomized to either VFEND or the regimen of amphotericin B followed by fluconazole.

Table 5: Protocol 305 – Patients with Esophageal Candidiasis Clinically Significant Laboratory Test Abnormalities

<table>
<thead>
<tr>
<th>Criteria*</th>
<th>Voriconazole n/N (%)</th>
<th>Fluconazole n/N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. Bilirubin >1.5× ULN</td>
<td>8/185 (4.3)</td>
<td>7/186 (3.8)</td>
</tr>
<tr>
<td>AST >3.0× ULN</td>
<td>38/187 (20.3)</td>
<td>15/186 (8.1)</td>
</tr>
</tbody>
</table>
Table 6: Protocol 307/602 – Primary Treatment of Invasive Aspergillosis Clinically Significant Laboratory Test Abnormalities

<table>
<thead>
<tr>
<th>Criteria*</th>
<th>Voriconazole</th>
<th>Amphotericin B†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N (%)</td>
<td>n/N (%)</td>
</tr>
<tr>
<td>T. Bilirubin >1.5× ULN</td>
<td>35/180 (19.4)</td>
<td>46/173 (26.6)</td>
</tr>
<tr>
<td>AST >3.0× ULN</td>
<td>21/180 (11.7)</td>
<td>18/174 (10.3)</td>
</tr>
<tr>
<td>ALT >3.0× ULN</td>
<td>34/180 (18.9)</td>
<td>40/173 (23.1)</td>
</tr>
<tr>
<td>Alkaline Phosphatase >3.0× ULN</td>
<td>29/181 (16.0)</td>
<td>38/173 (22.0)</td>
</tr>
<tr>
<td>Creatinine >1.3× ULN</td>
<td>39/182 (21.4)</td>
<td>102/177 (57.6)</td>
</tr>
<tr>
<td>Potassium <0.9× LLN</td>
<td>30/181 (16.6)</td>
<td>70/178 (39.3)</td>
</tr>
</tbody>
</table>

n = number of patients with a clinically significant abnormality while on study therapy
N = total number of patients with at least one observation of the given lab test while on study therapy
AST = Aspartate aminotransferase; ALT = alanine aminotransferase
ULN = upper limit of normal
LLN = lower limit of normal
* Without regard to baseline value
† Amphotericin B followed by other licensed antifungal therapy

Table 7: Protocol 608 – Treatment of Candidemia Clinically Significant Laboratory Test Abnormalities

<table>
<thead>
<tr>
<th>Criteria*</th>
<th>Voriconazole</th>
<th>Amphotericin B followed by Fluconazole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N (%)</td>
<td>n/N (%)</td>
</tr>
<tr>
<td>T. Bilirubin >1.5× ULN</td>
<td>50/261 (19.2)</td>
<td>31/115 (27.0)</td>
</tr>
<tr>
<td>AST >3.0× ULN</td>
<td>40/261 (15.3)</td>
<td>16/116 (13.8)</td>
</tr>
<tr>
<td>ALT >3.0× ULN</td>
<td>22/261 (8.4)</td>
<td>15/116 (12.9)</td>
</tr>
<tr>
<td>Alkaline Phosphatase >3.0× ULN</td>
<td>59/261 (22.6)</td>
<td>26/115 (22.6)</td>
</tr>
<tr>
<td>Creatinine >1.3× ULN</td>
<td>39/260 (15.0)</td>
<td>32/118 (27.1)</td>
</tr>
<tr>
<td>Potassium <0.9× LLN</td>
<td>43/258 (16.7)</td>
<td>35/118 (29.7)</td>
</tr>
</tbody>
</table>

n = number of patients with a clinically significant abnormality while on study therapy
Clinical Trials Experience in Pediatric Patients

The safety of VFEND was investigated in 105 pediatric patients aged 2 to less than 18 years, including 52 pediatric patients less than 18 years of age who were enrolled in the adult therapeutic studies.

Serious Adverse Reactions and Adverse Reactions Leading to Discontinuation

In clinical studies, serious adverse reactions occurred in 46% (48/105) of VFEND treated pediatric patients. Treatment discontinuations due to adverse reactions occurred in 12 /105 (11%) of all patients. Hepatic adverse reactions (i.e. ALT increased; liver function test abnormal; jaundice) 6% (6/105) accounted for the majority of VFEND treatment discontinuations.

Most Common Adverse Reactions

The most common adverse reactions occurring in ≥5% of pediatric patients receiving VFEND in the pooled pediatric clinical trials are displayed by body system, in Table 8.

Table 8: Treatment-Emergent Adverse Reactions Occurring in ≥5% of Pediatric Patients Receiving VFEND in the Pooled Pediatric Clinical Trials

<table>
<thead>
<tr>
<th>Body System</th>
<th>Adverse Reaction</th>
<th>Pooled Pediatric Data*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N=105 n (%)</td>
</tr>
<tr>
<td>Blood and Lymphatic Systems Disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td></td>
<td>10 (10)</td>
</tr>
<tr>
<td>Cardiac Disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachycardia</td>
<td></td>
<td>7 (7)</td>
</tr>
<tr>
<td>Eye Disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visual Disturbances†</td>
<td></td>
<td>27 (26)</td>
</tr>
<tr>
<td>Photophobia</td>
<td></td>
<td>6 (6)</td>
</tr>
<tr>
<td>Gastrointestinal Disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td></td>
<td>21 (20)</td>
</tr>
<tr>
<td>Nausea</td>
<td></td>
<td>14 (13)</td>
</tr>
<tr>
<td>Abdominal pain‡</td>
<td></td>
<td>13 (12)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td></td>
<td>12 (11)</td>
</tr>
<tr>
<td>Abdominal distention</td>
<td></td>
<td>5 (5)</td>
</tr>
<tr>
<td>Constipation</td>
<td></td>
<td>5 (5)</td>
</tr>
<tr>
<td>General Disorders and Administration Site Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrexia</td>
<td></td>
<td>25 (25)</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td></td>
<td>9 (9)</td>
</tr>
<tr>
<td>Mucosal inflammation</td>
<td></td>
<td>6 (6)</td>
</tr>
<tr>
<td>Infections and Infestations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td></td>
<td>5 (5)</td>
</tr>
<tr>
<td>Investigations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALT abnormal§</td>
<td></td>
<td>9 (9)</td>
</tr>
<tr>
<td>LFT abnormal</td>
<td></td>
<td>6 (6)</td>
</tr>
<tr>
<td>Metabolism and Nutrition Disorders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypokalemia</td>
<td></td>
<td>11 (11)</td>
</tr>
<tr>
<td>Hyperglycemia</td>
<td></td>
<td>7 (7)</td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td></td>
<td>6 (6)</td>
</tr>
<tr>
<td>Hypophosphotemia</td>
<td></td>
<td>6 (6)</td>
</tr>
<tr>
<td>Hypoalbuminemia</td>
<td></td>
<td>5 (5)</td>
</tr>
<tr>
<td>Disorders</td>
<td>Adverse Reaction</td>
<td>Incidence</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td></td>
<td>5 (5)</td>
</tr>
<tr>
<td>Nervous System Disorders</td>
<td>Headache</td>
<td>10 (10)</td>
</tr>
<tr>
<td></td>
<td>Dizziness</td>
<td>5 (5)</td>
</tr>
<tr>
<td>Psychiatric Disorders</td>
<td>Hallucinations</td>
<td>5 (5)</td>
</tr>
<tr>
<td>Renal and Urinary Disorders</td>
<td>Renal impairment</td>
<td>5 (5)</td>
</tr>
<tr>
<td>Respiratory Disorders</td>
<td>Epistaxis</td>
<td>17 (16)</td>
</tr>
<tr>
<td></td>
<td>Cough</td>
<td>10 (10)</td>
</tr>
<tr>
<td></td>
<td>Dyspnea</td>
<td>6 (6)</td>
</tr>
<tr>
<td></td>
<td>Hemoptysis</td>
<td>5 (5)</td>
</tr>
<tr>
<td>Skin and Subcutaneous Tissue Disorders</td>
<td>Rash</td>
<td>14 (13)</td>
</tr>
<tr>
<td>Vascular Disorders</td>
<td>Hypertension</td>
<td>12 (11)</td>
</tr>
<tr>
<td></td>
<td>Hypotension</td>
<td>9 (9)</td>
</tr>
</tbody>
</table>

Abbreviations: ALT = alanine aminotransferase; LFT = liver function test

* Reflects all adverse reactions and not treatment-related only.

† Pooled reports include such terms as: amaurosis (partial or total blindness without visible change in the eye); asthenopia (eye strain); chromatopsia (abnormally colored vision); color blindness; diplopia; photopsia; retinal disorder; vision blurred, visual acuity decreased, visual brightness; visual impairment. Several patients had more than one visual disturbance.

‡ Pooled reports include such terms as: abdominal pain and abdominal pain, upper.

§ Pooled reports include such terms as: ALT abnormal and ALT increased.

¶ Pooled reports include such terms as: hallucination; hallucination, auditory; hallucination, visual. Several patients had both visual and auditory hallucinations.

Pooled reports include subch terms as: renal failure and a single patient with renal impairment.

P Pooled reports include such terms as: rash; rash generalized; rash macular; rash maculopapular; rash pruritic.

The following adverse reactions with incidence less than 5% were reported in 105 pediatric patients treated with VFEND:

Blood and Lymphatic System Disorders: anemia, leukopenia, pancytopenia

Cardiac Disorders: bradycardia, palpitations, supraventricular tachycardia

Eye Disorders: dry eye, keratitis

Ear and Labyrinth Disorders: tinnitus, vertigo

Gastrointestinal Disorders: abdominal tenderness, dyspepsia

General Disorders and Administration Site Conditions: asthenia, catheter site pain, chills, hypothermia, lethargy

Hepatobiliary Disorders: cholestasis, hyperbilirubinemia, jaundice

Immune System Disorders: hypersensitivity, urticaria

Infections and Infestations: conjunctivitis

Laboratory Investigations: AST increased, blood creatinine increased, gamma-glutamyl transferase increased

Metabolism and Nutrition Disorders: hypercalcemia, hypermagnesemia, hyperphosphatemia, hypoglycemia

Musculoskeletal and Connective Tissue Disorders: arthralgia, myalgia

Nervous System Disorders: ataxia, convulsion, dizziness, nystagmus, paresthesia, syncope
Nervous System Disorders: ataxia, convulsion, dizziness, nystagmus, paresthesia, syncope

Psychiatric Disorders: affect lability, agitation, anxiety, depression, insomnia

Respiratory Disorders: bronchospasm, nasal congestion, respiratory failure, tachypnea

Skin and Subcutaneous Tissue Disorders: alopecia, dermatitis (allergic, contact, and exfoliative), pruritus

Vascular Disorders: flushing, phlebitis

Hepatic-Related Adverse Reactions in Pediatric Patients

The frequency of hepatic-related adverse reactions in pediatric patients exposed to VFEND in therapeutic studies was numerically higher than that of adults (28.6% compared to 24.1%, respectively). The higher frequency of hepatic adverse reactions in the pediatric population was mainly due to an increased frequency of liver enzyme elevations (21.9% in pediatric patients compared to 16.1% in adults), including transaminase elevations (ALT and AST combined) 7.6% in the pediatric patients compared to 5.1% in adults.

Clinical Laboratory Values in Pediatric Patients

The overall incidence of transaminase increases >3× upper limit of normal was 27.2% (28/103) in pediatric and 17.7% (268/1514) in adult patients treated with VFEND in pooled clinical trials. The majority of abnormal liver function tests either resolved on treatment with or without dose adjustment or after VFEND discontinuation.

A higher frequency of clinically significant liver laboratory abnormalities, irrespective of baseline laboratory values (>3× ULN ALT or AST), was consistently observed in the combined therapeutic pediatric population (15.5% AST and 22.5% ALT) when compared to adults (12.9% AST and 11.6% ALT). The incidence of bilirubin elevation was comparable between adult and pediatric patients. The incidence of hepatic abnormalities in pediatric patients is shown in Table 9.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>n/N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total bilirubin >1.5× ULN</td>
<td>19/102 (19)</td>
</tr>
<tr>
<td>AST >3.0× ULN</td>
<td>16/103 (16)</td>
</tr>
<tr>
<td>ALT >3.0× ULN</td>
<td>23/102 (23)</td>
</tr>
<tr>
<td>Alkaline Phosphatase >3.0× ULN</td>
<td>8/97 (8)</td>
</tr>
</tbody>
</table>

n = number of patients with a clinically significant abnormality while on study therapy
N = total number of patients with at least one observation of the given lab test while on study therapy
AST = Aspartate aminotransferase; ALT = alanine aminotransferase
ULN = upper limit of normal

6.2 Postmarketing Experience in Adult and Pediatric Patients

The following adverse reactions have been identified during post-approval use of VFEND. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Adults

Skeletal: fluorosis and periostitis have been reported during long-term voriconazole therapy [see Warnings and Precautions (5.11)].

Eye disorders: prolonged visual adverse reactions, including optic neuritis and papilledema [see Warnings and Precautions (5.4)].

Pediatric Patients
There have been postmarketing reports of pancreatitis in pediatric patients.

7 DRUG INTERACTIONS

Voriconazole is metabolized by, and inhibits the activity of, cytochrome P450 isoenzymes, CYP2C19, CYP2C9, and CYP3A4. Inhibitors or inducers of these isoenzymes may increase or decrease voriconazole plasma concentrations, respectively, and there is potential for voriconazole to increase the plasma concentrations of substances metabolized by these CYP450 isoenzymes.

Tables 10 and 11 provide the clinically significant interactions between voriconazole and other medical products.

Table 10: Effect of Other Drugs on Voriconazole Pharmacokinetics [see Clinical Pharmacology (12.3)]

<table>
<thead>
<tr>
<th>Drug/Drug Class (Mechanism of Interaction by the Drug)</th>
<th>Voriconazole Plasma Exposure (C_{max} and AUC_τ after 200 mg every 12 hours)</th>
<th>Recommendations for Voriconazole Dosage Adjustment/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rifampin* and Rifabutin* (CYP450 Induction)</td>
<td>Significantly Reduced</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Efavirenz (400 mg every 24 hours)† (CYP450 Induction)</td>
<td>Significantly Reduced</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Efavirenz (300 mg every 24 hours)† (CYP450 Induction)</td>
<td>Slight Decrease in AUC_τ</td>
<td></td>
</tr>
<tr>
<td>High-dose Ritonavir (400 mg every 12 hours)† (CYP450 Induction)</td>
<td>Significantly Reduced</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Low-dose Ritonavir (100 mg every 12 hours)† (CYP450 Induction)</td>
<td>Reduced</td>
<td></td>
</tr>
<tr>
<td>Carbamazepine (CYP450 Induction)</td>
<td>Not Studied In Vivo or In Vitro, but Likely to Result in Significant Reduction</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Long Acting Barbiturates (CYP450 Induction)</td>
<td>Not Studied In Vivo or In Vitro, but Likely to Result in Significant Reduction</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Phenytoin* (CYP450 Induction)</td>
<td>Significantly Reduced</td>
<td>Increase voriconazole maintenance dose from 4 mg/kg to 5 mg/kg IV every 12 hours or from 200 mg to 400 mg orally every 12 hours (100 mg to 200 mg orally every 12 hours in patients weighing less than 40 kg).</td>
</tr>
<tr>
<td>Drug/Drug Class (Mechanism of Interaction by Voriconazole)</td>
<td>Drug Plasma Exposure (C_{max} and AUC_{τ})</td>
<td>Recommendations for DrugDosage Adjustment/Comments</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sirolimus* (CYP3A4 Inhibition)</td>
<td>Significantly Increased</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Rifabutin* (CYP3A4 Inhibition)</td>
<td>Significantly Increased</td>
<td>Contraindicated</td>
</tr>
<tr>
<td>Efavirenz (400 mg every 24 hours)* (CYP3A4 Inhibition)</td>
<td>Significantly Increased</td>
<td>Contraindicated</td>
</tr>
</tbody>
</table>

* Results based on in vivo clinical studies generally following repeat oral dosing with 200 mg every 12 hours voriconazole to healthy subjects
† Results based on in vivo clinical study following repeat oral dosing with 400 mg every 12 hours for 1 day, then 200 mg every 12 hours for at least 2 days voriconazole to healthy subjects
‡ Non-Nucleoside Reverse Transcriptase Inhibitors

Table 11: Effect of Voriconazole on Pharmacokinetics of Other Drugs [see Clinical Pharmacology (12.3)]
<table>
<thead>
<tr>
<th>Drug</th>
<th>(CYP3A4 Inhibition)</th>
<th>Effect</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efavirenz (300 mg every 24 hours) †</td>
<td>Slight Increase in AUC<sub>τ</sub></td>
<td>coadministered with efavirenz, voriconazole oral maintenance dose should be increased to 400 mg every 12 hours and efavirenz should be decreased to 300 mg every 24 hours.</td>
<td></td>
</tr>
<tr>
<td>High-dose Ritonavir (400 mg every 12 hours) †(CYP3A4 Inhibition)</td>
<td>No Significant Effect of Voriconazole on Ritonavir C<sub>max</sub> or AUC<sub>τ</sub></td>
<td>Contraindicated because of significant reduction of voriconazole C<sub>max</sub> and AUC<sub>τ</sub>. Coadministration of voriconazole and low-dose ritonavir (100 mg every 12 hours) should be avoided (due to the reduction in voriconazole C<sub>max</sub> and AUC<sub>τ</sub>) unless an assessment of the benefit/risk to the patient justifies the use of voriconazole.</td>
<td></td>
</tr>
<tr>
<td>Low-dose Ritonavir (100 mg every 12 hours) †</td>
<td>Slight Decrease in Ritonavir C<sub>max</sub> and AUC<sub>τ</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cisapride, Pimozide, Quinidine (CYP3A4 Inhibition)</td>
<td>Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased</td>
<td>Contraindicated because of potential for QT prolongation and rare occurrence of torsade de pointes.</td>
<td></td>
</tr>
<tr>
<td>Ergot Alkaloids (CYP450 Inhibition)</td>
<td>Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased</td>
<td>Contraindicated</td>
<td></td>
</tr>
<tr>
<td>Cyclosporine* (CYP3A4 Inhibition)</td>
<td>AUC<sub>τ</sub> Significantly Increased; No Significant Effect on C<sub>max</sub></td>
<td>When initiating therapy with VFEND in patients already receiving cyclosporine, reduce the cyclosporine dose to one-half of the starting dose and follow with frequent monitoring of cyclosporine blood levels. Increased cyclosporine levels have been associated with nephrotoxicity. When VFEND is discontinued, cyclosporine concentrations must be frequently monitored and the dose increased as necessary.</td>
<td></td>
</tr>
<tr>
<td>Methadone ‡ (CYP3A4 Inhibition)</td>
<td>Increased</td>
<td>Increased plasma concentrations of methadone have been associated with toxicity including QT prolongation. Frequent monitoring for adverse events and toxicity related to methadone is recommended during coadministration. Dose reduction of methadone may be needed.</td>
<td></td>
</tr>
<tr>
<td>Fentanyl (CYP3A4 Inhibition)</td>
<td>Increased</td>
<td>Reduction in the dose of fentanyl and other long-acting opiates metabolized by CYP3A4 should be considered when coadministered with VFEND.</td>
<td></td>
</tr>
<tr>
<td>Drug Interaction</td>
<td>Effect</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Alfentanil (CYP3A4 Inhibition)</td>
<td>Significantly Increased</td>
<td>Reduction in the dose of alfentanil and other opiates metabolized by CYP3A4 (e.g., sufentanil) should be considered when coadministered with VFEND. A longer period for monitoring respiratory and other opiate-associated adverse events may be necessary [see Drug Interactions (7)].</td>
<td></td>
</tr>
<tr>
<td>Oxycodone (CYP3A4 Inhibition)</td>
<td>Significantly Increased</td>
<td>Reduction in the dose of oxycodone and other long-acting opiates metabolized by CYP3A4 should be considered when coadministered with VFEND. Extended and frequent monitoring for opiate-associated adverse events may be necessary [see Drug Interactions (7)].</td>
<td></td>
</tr>
<tr>
<td>NSAIDs$^&$ including ibuprofen and diclofenac (CYP2C9 Inhibition)</td>
<td>Increased</td>
<td>Frequent monitoring for adverse events and toxicity related to NSAIDs. Dose reduction of NSAIDs may be needed [see Drug Interactions (7)].</td>
<td></td>
</tr>
<tr>
<td>Tacrolimus* (CYP3A4 Inhibition)</td>
<td>Significantly Increased</td>
<td>When initiating therapy with VFEND in patients already receiving tacrolimus, reduce the tacrolimus dose to one-third of the starting dose and follow with frequent monitoring of tacrolimus blood levels. Increased tacrolimus levels have been associated with nephrotoxicity. When VFEND is discontinued, tacrolimus concentrations must be frequently monitored and the dose increased as necessary.</td>
<td></td>
</tr>
<tr>
<td>Phenytoin* (CYP2C9 Inhibition)</td>
<td>Significantly Increased</td>
<td>Frequent monitoring of phenytoin plasma concentrations and frequent monitoring of adverse effects related to phenytoin.</td>
<td></td>
</tr>
<tr>
<td>Oral Contraceptives containing ethinyl estradiol and norethindrone (CYP3A4 Inhibition)7</td>
<td>Increased</td>
<td>Monitoring for adverse events related to oral contraceptives is recommended during coadministration.</td>
<td></td>
</tr>
<tr>
<td>Warfarin* (CYP2C9 Inhibition)</td>
<td>Prothrombin Time Significantly Increased</td>
<td>Monitor PT or other suitable anticoagulation tests. Adjustment of warfarin dosage may be needed.</td>
<td></td>
</tr>
<tr>
<td>Drug</td>
<td>Effect</td>
<td>Interaction Details</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Omeprazole* (CYP2C19/3A4 Inhibition)</td>
<td>Significantly Increased</td>
<td>When initiating therapy with VFEND in patients already receiving omeprazole doses of 40 mg or greater, reduce the omeprazole dose by one-half. The metabolism of other proton pump inhibitors that are CYP2C19 substrates may also be inhibited by voriconazole and may result in increased plasma concentrations of other proton pump inhibitors.</td>
<td></td>
</tr>
<tr>
<td>Other HIV Protease Inhibitors (CYP3A4 Inhibition)</td>
<td>In Vivo Studies Showed No Significant Effects on Indinavir Exposure In Vitro Studies Demonstrated Potential for Voriconazole to Inhibit Metabolism (Increased Plasma Exposure)</td>
<td>No dosage adjustment for indinavir when coadministered with VFEND. Frequent monitoring for adverse events and toxicity related to other HIV protease inhibitors.</td>
<td></td>
</tr>
<tr>
<td>Other NNRTIs (CYP3A4 Inhibition)</td>
<td>A Voriconazole-Efavirenz Drug Interaction Study Demonstrated the Potential for Voriconazole to Inhibit Metabolism of Other NNRTIs (Increased Plasma Exposure)</td>
<td>Frequent monitoring for adverse events and toxicity related to NNRTI.</td>
<td></td>
</tr>
<tr>
<td>Benzodiazepines (CYP3A4 Inhibition)</td>
<td>In Vitro Studies Demonstrated Potential for Voriconazole to Inhibit Metabolism (Increased Plasma Exposure)</td>
<td>Frequent monitoring for adverse events and toxicity (i.e., prolonged sedation) related to benzodiazepines metabolized by CYP3A4 (e.g., midazolam, triazolam, alprazolam). Adjustment of benzodiazepine dosage may be needed.</td>
<td></td>
</tr>
<tr>
<td>HMG-CoA Reductase Inhibitors (Statins) (CYP3A4 Inhibition)</td>
<td>In Vitro Studies Demonstrated Potential for Voriconazole to Inhibit Metabolism (Increased Plasma Exposure)</td>
<td>Frequent monitoring for adverse events and toxicity related to statins. Increased statin concentrations in plasma have been associated with rhabdomyolysis. Adjustment of the statin dosage may be needed.</td>
<td></td>
</tr>
<tr>
<td>Dihydropyridine Calcium Channel Blockers (CYP3A4 Inhibition)</td>
<td>In Vitro Studies Demonstrated Potential for Voriconazole to Inhibit Metabolism (Increased Plasma Exposure)</td>
<td>Frequent monitoring for adverse events and toxicity related to calcium channel blockers. Adjustment of calcium channel blocker dosage may be needed.</td>
<td></td>
</tr>
<tr>
<td>Sulfonylurea Oral Hypoglycemics (CYP2C9 Inhibition)</td>
<td>Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased</td>
<td>Frequent monitoring of blood glucose and for signs and symptoms of hypoglycemia. Adjustment of oral hypoglycemic drug dosage may be needed.</td>
<td></td>
</tr>
</tbody>
</table>

*When initiating therapy with VFEND in patients already receiving omeprazole doses of 40 mg or greater, reduce the omeprazole dose by one-half. The metabolism of other proton pump inhibitors that are CYP2C19 substrates may also be inhibited by voriconazole and may result in increased plasma concentrations of other proton pump inhibitors.

Not Studied In Vivo or In Vitro, but Drug Plasma Exposure Likely to be Increased
8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

Voriconazole can cause fetal harm when administered to a pregnant woman. There are no available data on the use of VFEND in pregnant women. In animal reproduction studies, oral voriconazole was associated with fetal malformations in rats and fetal toxicity in rabbits. Cleft palates and hydronephrosis/hydrourereter were observed in rat pups exposed to voriconazole during organogenesis at and above 10 mg/kg (0.3 times the RMD of 200 mg every 12 hours based on body surface area comparisons). In rabbits, embryomortality, reduced fetal weight and increased incidence of skeletal variations, cervical ribs and extrasternal ossification sites were observed in pups when pregnant rabbits were orally dosed at 100 mg/kg (6 times the RMD based on body surface area comparisons) during organogenesis. Rats exposed to voriconazole from implantation to weaning experienced increased gestational length and dystocia, which were associated with increased perinatal pup mortality at the 10 mg/kg dose [see Data].

If this drug is used during pregnancy, or if the patient becomes pregnant while taking this drug, inform the patient of the potential hazard to the fetus [see Warnings and Precautions (5.8)].

The background risk of major birth defects and miscarriage for the indicated populations is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2–4% and 15–20% respectively.

Data

Animal Data

Voriconazole was administered orally to pregnant rats during organogenesis (gestation days 6–17) at 10, 30, and 60 mg/kg/day. Voriconazole was associated with increased incidences in hydroureter and hydronephrosis at 10 mg/kg/day or greater, approximately 0.3 times the recommended human dose (RMD) based on mg/m², and cleft palate at 60 mg/kg, approximately 2 times the RMD based on mg/m². Reduced ossification of sacral and caudal vertebrae, skull, pubic, and hyoid bone, supernumerary ribs, anomalies of the sternbrae, and dilatation of the ureter/renal pelvis were also observed at doses of 10 mg/kg or greater. There was no evidence of maternal toxicity at any dose.

Voriconazole was administered orally to pregnant rabbits during the period of organogenesis (gestation...
days 7–19) at 10, 40, and 100 mg/kg/day. Voriconazole was associated with increased post-implantation loss and decreased fetal body weight, in association with maternal toxicity (decreased body weight gain and food consumption) at 100 mg/kg/day (6 times the RMD based on mg/m²). Fetal skeletal variations (increases in the incidence of cervical rib and extra sternebral ossification sites) were observed at 100 mg/kg/day.

In a peri- and postnatal toxicity study in rats, voriconazole was administered orally to female rats from implantation through the end of lactation at 1, 3, and 10 mg/kg/day. Voriconazole prolonged the duration of gestation and labor and produced dystocia with related increases in maternal mortality and decreases in perinatal survival of F1 pups at 10 mg/kg/day, approximately 0.3 times the RMD.

8.2 Lactation

Risk Summary

No data are available regarding the presence of voriconazole in human milk, the effects of voriconazole on the breastfed infant, or the effects on milk production. The developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for VFEND and any potential adverse effects on the breastfed child from VFEND or from the underlying maternal condition.

8.3 Females and Males of Reproductive Potential

Contraception

Advise females of reproductive potential to use effective contraception during treatment with VFEND. The coadministration of voriconazole with the oral contraceptive, Ortho-Novum® (35 mcg ethinyl estradiol and 1 mg norethindrone), results in an interaction between these two drugs, but is unlikely to reduce the contraceptive effect. Monitoring for adverse reactions associated with oral contraceptives and voriconazole is recommended [see Drug Interactions (7) and Clinical Pharmacology (12.3)].

8.4 Pediatric Use

The safety and effectiveness of VFEND have been established in pediatric patients 2 years of age and older based on evidence from adequate and well-controlled studies in adult and pediatric patients and additional pediatric pharmacokinetic and safety data.

A total of 105 pediatric patients aged 2 to less than 12 [N=26] and aged 12 to less than 18 [N=79] from two, non-comparative Phase 3 pediatric studies and eight adult therapeutic trials provided safety information for VFEND use in the pediatric population [see Adverse Reactions (6.1), Clinical Pharmacology (12.3), and Clinical Studies (14)].

Safety and effectiveness in pediatric patients below the age of 2 years has not been established. Therefore, VFEND is not recommended for pediatric patients less than 2 years of age.

A higher frequency of liver enzyme elevations was observed in the pediatric patients [see Dosage and Administration (2.5), Warnings and Precautions (5.1), and Adverse Reactions (6.1)].

The frequency of phototoxicity reactions is higher in the pediatric population. Squamous cell carcinoma has been reported in patients who experience photosensitivity reactions. Stringent measures for photoprotection are warranted. Sun avoidance and dermatologic follow-up are recommended in pediatric patients experiencing photoaging injuries, such as lentigines or ephelides, even after treatment discontinuation [see Warnings and Precautions (5.6)].

VFEND has not been studied in pediatric patients with hepatic or renal impairment [see Dosage and Administration (2.5, 2.6)]. Hepatic function and serum creatinine levels should be closely monitored in pediatric patients [see Dosage and Administration (2.6) and Warnings and Precautions (5.1, 5.9)].

8.5 Geriatric Use

In multiple dose therapeutic trials of voriconazole, 9.2% of patients were ≥65 years of age and 1.8% of
patients were ≥75 years of age. In a study in healthy subjects, the systemic exposure (AUC) and peak plasma concentrations (C\textsubscript{max}) were increased in elderly males compared to young males. Pharmacokinetic data obtained from 552 patients from 10 voriconazole therapeutic trials showed that voriconazole plasma concentrations in the elderly patients were approximately 80% to 90% higher than those in younger patients after either IV or oral administration. However, the overall safety profile of the elderly patients was similar to that of the young so no dosage adjustment is recommended [see Clinical Pharmacology (12.3)].

10 OVERDOSAGE

In clinical trials, there were three cases of accidental overdose. All occurred in pediatric patients who received up to five times the recommended intravenous dose of voriconazole. A single adverse event of photophobia of 10 minutes duration was reported.

There is no known antidote to voriconazole.

Voriconazole is hemodialyzed with clearance of 121 mL/min. The intravenous vehicle, SBEC, is hemodialyzed with clearance of 55 mL/min. In an overdose, hemodialysis may assist in the removal of voriconazole and SBEC from the body.

11 DESCRIPTION

VFEND (voriconazole), an azole antifungal agent is available as a lyophilized powder for solution for intravenous infusion. The structural formula is:

![Structural formula of voriconazole](image)

Voriconazole is designated chemically as (2R,3S)-2-(2, 4-difluorophenyl)-3-(5-fluoro-4-pyrimidinyl)-1-(1H-1,2,4-triazol-1-yl)-2-butanol with an empirical formula of C\textsubscript{16}H\textsubscript{14}F\textsubscript{3}N\textsubscript{5}O and a molecular weight of 349.3.

Voriconazole drug substance is a white to light-colored powder.

VFEND I.V. is a white lyophilized powder containing nominally 200 mg voriconazole and 3200 mg sulfobutyl ether beta-cyclodextrin sodium in a 30 mL Type I clear glass vial.

VFEND I.V. is intended for administration by intravenous infusion. It is a single-dose, unpreserved product. Vials containing 200 mg lyophilized voriconazole are intended for reconstitution with Water for Injection to produce a solution containing 10 mg/mL VFEND and 160 mg/mL of sulfobutyl ether
beta-cyclodextrin sodium. The resultant solution is further diluted prior to administration as an intravenous infusion [see Dosage and Administration (2)].

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action
Voriconazole is an antifungal drug [see Microbiology (12.4)].

12.2 Pharmacodynamics

Exposure-Response Relationship For Efficacy and Safety

In 10 clinical trials (N=1121), the median values for the average and maximum voriconazole plasma concentrations in individual patients across these studies was 2.51 µg/mL (inter-quartile range 1.21 to 4.44 µg/mL) and 3.79 µg/mL (inter-quartile range 2.06 to 6.31 µg/mL), respectively. A pharmacokinetic-pharmacodynamic analysis of patient data from 6 of these 10 clinical trials (N=280) could not detect a positive association between mean, maximum or minimum plasma voriconazole concentration and efficacy. However, pharmacokinetic/pharmacodynamic analyses of the data from all 10 clinical trials identified positive associations between plasma voriconazole concentrations and rate of both liver function test abnormalities and visual disturbances [see Adverse Reactions (6)].

Cardiac Electrophysiology

A placebo-controlled, randomized, crossover study to evaluate the effect on the QT interval of healthy male and female subjects was conducted with three single oral doses of voriconazole and ketoconazole. Serial ECGs and plasma samples were obtained at specified intervals over a 24-hour post dose observation period. The placebo-adjusted mean maximum increases in QTc from baseline after 800, 1200, and 1600 mg of voriconazole and after ketoconazole 800 mg were all <10 msec. Females exhibited a greater increase in QTc than males, although all mean changes were <10 msec. Age was not found to affect the magnitude of increase in QTc. No subject in any group had an increase in QTc of ≥60 msec from baseline. No subject experienced an interval exceeding the potentially clinically relevant threshold of 500 msec. However, the QT effect of voriconazole combined with drugs known to prolong the QT interval is unknown [see Contraindications (4) and Drug Interactions (7)].

12.3 Pharmacokinetics

The pharmacokinetics of voriconazole have been characterized in healthy subjects, special populations and patients.

The pharmacokinetics of voriconazole are non-linear due to saturation of its metabolism. The interindividual variability of voriconazole pharmacokinetics is high. Greater than proportional increase in exposure is observed with increasing dose. It is estimated that, on average, increasing the oral dose from 200 mg every 12 hours to 300 mg every 12 hours leads to an approximately 2.5-fold increase in exposure (AUC); similarly, increasing the intravenous dose from 3 mg/kg every 12 hours to 4 mg/kg every 12 hours produces an approximately 2.5-fold increase in exposure (Table 12).

Table 12: Geometric Mean (%CV) Plasma Voriconazole Pharmacokinetic Parameters in Adults Receiving Different Dosing Regimens

<table>
<thead>
<tr>
<th>Dosing Regimen</th>
<th>6 mg/kg IV (loading dose)</th>
<th>3 mg/kg IV every 12 hours</th>
<th>4 mg/kg IV every 12 hours</th>
<th>400 mg Oral (loading dose)</th>
<th>200 mg Oral every 12 hours</th>
<th>300 mg Oral every 12 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>35</td>
<td>23</td>
<td>40</td>
<td>17</td>
<td>48</td>
<td>16</td>
</tr>
<tr>
<td>AUC₁₂ (µg·h/mL)</td>
<td>13.9 (32)</td>
<td>13.7 (53)</td>
<td>33.9 (54)</td>
<td>9.31 (38)</td>
<td>12.4 (78)</td>
<td>34.0 (53)</td>
</tr>
<tr>
<td>Cₘₐₓ (µg/mL)</td>
<td>3.13 (20)</td>
<td>3.03 (25)</td>
<td>4.77 (36)</td>
<td>2.30 (19)</td>
<td>2.31 (48)</td>
<td>4.74 (35)</td>
</tr>
</tbody>
</table>
When the recommended intravenous loading dose regimen is administered to healthy subjects, plasma concentrations close to steady state are achieved within the first 24 hours of dosing (e.g., 6 mg/kg IV every 12 hours on day 1 followed by 3 mg/kg IV every 12 hours). Without the loading dose, accumulation occurs during twice daily multiple dosing with steady state plasma voriconazole concentrations being achieved by day 6 in the majority of subjects.

Absorption

The pharmacokinetic properties of voriconazole are similar following administration by the intravenous and oral routes. Based on a population pharmacokinetic analysis of pooled data in healthy subjects (N=207), the oral bioavailability of voriconazole is estimated to be 96% (CV 13%).

Maximum plasma concentrations (C_{max}) are achieved 1–2 hours after dosing. When multiple doses of voriconazole are administered with high-fat meals, the mean C_{max} and AUC_{t} are reduced by 34% and 24%, respectively when administered as a tablet and by 58% and 37% respectively when administered as the oral suspension [see Dosage and Administration (2)].

In healthy subjects, the absorption of voriconazole is not affected by coadministration of oral ranitidine, cimetidine, or omeprazole, drugs that are known to increase gastric pH.

Distribution

The volume of distribution at steady state for voriconazole is estimated to be 4.6 L/kg, suggesting extensive distribution into tissues. Plasma protein binding is estimated to be 58% and was shown to be independent of plasma concentrations achieved following single and multiple oral doses of 200 mg or 300 mg (approximate range: 0.9–15 µg/mL). Varying degrees of hepatic and renal impairment do not affect the protein binding of voriconazole.

Elimination

Metabolism

In vitro studies showed that voriconazole is metabolized by the human hepatic cytochrome P450 enzymes, CYP2C19, CYP2C9 and CYP3A4 [see Drug Interactions (7)].

In vivo studies indicated that CYP2C19 is significantly involved in the metabolism of voriconazole. This enzyme exhibits genetic polymorphism [see Clinical Pharmacology (12.5)].

The major metabolite of voriconazole is the N-oxide, which accounts for 72% of the circulating radiolabelled metabolites in plasma. Since this metabolite has minimal antifungal activity, it does not contribute to the overall efficacy of voriconazole.

Excretion

Voriconazole is eliminated via hepatic metabolism with less than 2% of the dose excreted unchanged in the urine. After administration of a single radiolabelled dose of either oral or IV voriconazole, preceded by multiple oral or IV dosing, approximately 80% to 83% of the radioactivity is recovered in the urine. The majority (>94%) of the total radioactivity is excreted in the first 96 hours after both oral and intravenous dosing.

As a result of non-linear pharmacokinetics, the terminal half-life of voriconazole is dose dependent and therefore not useful in predicting the accumulation or elimination of voriconazole.

Specific Populations

Male and Female Patients
In a multiple oral dose study, the mean C_{max} and AUC_{t} for healthy young females were 83% and 113% higher, respectively, than in healthy young males (18–45 years), after tablet dosing. In the same study, no significant differences in the mean C_{max} and AUC_{t} were observed between healthy elderly males and healthy elderly females (>65 years). In a similar study, after dosing with the oral suspension, the mean AUC for healthy young females was 45% higher than in healthy young males whereas the mean C_{max} was comparable between genders. The steady state trough voriconazole concentrations (C_{min}) seen in females were 100% and 91% higher than in males receiving the tablet and the oral suspension, respectively.

In the clinical program, no dosage adjustment was made on the basis of gender. The safety profile and plasma concentrations observed in male and female subjects were similar. Therefore, no dosage adjustment based on gender is necessary.

Geriatric Patients

In an oral multiple dose study the mean C_{max} and AUC_{t} in healthy elderly males (≥65 years) were 61% and 86% higher, respectively, than in young males (18–45 years). No significant differences in the mean C_{max} and AUC_{t} were observed between healthy elderly females (≥65 years) and healthy young females (18–45 years).

In the clinical program, no dosage adjustment was made on the basis of age. An analysis of pharmacokinetic data obtained from 552 patients from 10 voriconazole clinical trials showed that the median voriconazole plasma concentrations in the elderly patients (>65 years) were approximately 80% to 90% higher than those in the younger patients (≤65 years) after either IV or oral administration. However, the safety profile of voriconazole in young and elderly subjects was similar and, therefore, no dosage adjustment is necessary for the elderly [see Use in Special Populations (8.5)].

Pediatric Patients

The recommended doses in pediatric patients were based on a population pharmacokinetic analysis of data obtained from 112 immunocompromised pediatric patients aged 2 to less than 12 years and 26 immunocompromised pediatric patients aged 12 to less than 17 years.

A comparison of the pediatric and adult population pharmacokinetic data indicated that the predicted total exposure (AUC_{12}) in pediatric patients aged 2 to less than 12 years following administration of a 9 mg/kg intravenous loading dose was comparable to that in adults following a 6 mg/kg intravenous loading dose. The predicted total exposures in pediatric patients aged 2 to less than 12 years following intravenous maintenance doses of 4 and 8 mg/kg twice daily were comparable to those in adults following 3 and 4 mg/kg IV twice daily, respectively.

The predicted total exposure in pediatric patients aged 2 to less than 12 years following an oral maintenance dose of 9 mg/kg (maximum of 350 mg) twice daily was comparable to that in adults following 200 mg oral twice daily. An 8 mg/kg intravenous dose will provide voriconazole exposure approximately 2-fold higher than a 9 mg/kg oral dose in pediatric patients aged 2 to less than 12 years.

Voriconazole exposures in the majority of pediatric patients aged 12 to less than 17 years were comparable to those in adults receiving the same dosing regimens. However, lower voriconazole exposure was observed in some pediatric patients aged 12 to less than 17 years with low body weight compared to adults [see Dosage and Administration (2.4)].

Limited voriconazole trough plasma samples were collected in pediatric patients aged 2 to less than 18 years with IA or invasive candidiasis including candidemia, and EC in two prospective, open-label, non-comparative, multicenter clinical studies. In eleven pediatric patients aged 2 to less than 12 years and aged 12 to 14 years, with body weight less than 50 kg, who received 9 mg/kg intravenously every 12 hours as a loading dose on the first day of treatment, followed by 8 mg/kg every 12 hours as an intravenous maintenance dose, or 9 mg/kg every 12 hours as an oral maintenance dose, the mean trough concentration of voriconazole was 3.6 mcg/mL (range 0.3 to 10.7 mcg/mL). In four pediatric patients aged 2 to less than 12 years and aged 12 to 14 years, with body weight less than 50 kg, who received 4
mg/kg intravenously every 12 hours, the mean trough concentration of voriconazole was 0.9 mcg/mL (range 0.3 to 1.6 mcg/mL) [see Clinical Studies (14.5)].

Patients with Hepatic Impairment

After a single oral dose (200 mg) of voriconazole in 8 patients with mild (Child-Pugh Class A) and 4 patients with moderate (Child-Pugh Class B) hepatic impairment, the mean systemic exposure (AUC) was 3.2-fold higher than in age and weight matched controls with normal hepatic function. There was no difference in mean peak plasma concentrations (C_{max}) between the groups. When only the patients with mild (Child-Pugh Class A) hepatic impairment were compared to controls, there was still a 2.3-fold increase in the mean AUC in the group with hepatic impairment compared to controls.

In an oral multiple dose study, AUC_τ was similar in 6 subjects with moderate hepatic impairment (Child-Pugh Class B) given a lower maintenance dose of 100 mg twice daily compared to 6 subjects with normal hepatic function given the standard 200 mg twice daily maintenance dose. The mean peak plasma concentrations (C_{max}) were 20% lower in the hepatically impaired group. No pharmacokinetic data are available for patients with severe hepatic cirrhosis (Child-Pugh Class C) [see Dosage and Administration (2.5)].

Patients with Renal Impairment

In a single oral dose (200 mg) study in 24 subjects with normal renal function and mild to severe renal impairment, systemic exposure (AUC) and peak plasma concentration (C_{max}) of voriconazole were not significantly affected by renal impairment. Therefore, no adjustment is necessary for oral dosing in patients with mild to severe renal impairment.

In a multiple dose study of IV voriconazole (6 mg/kg IV loading dose × 2, then 3 mg/kg IV × 5.5 days) in 7 patients with moderate renal dysfunction (creatinine clearance 30–50 mL/min), the systemic exposure (AUC) and peak plasma concentrations (C_{max}) were not significantly different from those in 6 subjects with normal renal function.

However, in patients with moderate renal dysfunction (creatinine clearance 30–50 mL/min), accumulation of the intravenous vehicle, SBEC, occurs. The mean systemic exposure (AUC) and peak plasma concentrations (C_{max}) of SBEC were increased 4-fold and almost 50%, respectively, in the moderately impaired group compared to the normal control group.

A pharmacokinetic study in subjects with renal failure undergoing hemodialysis showed that voriconazole is dialyzed with clearance of 121 mL/min. The intravenous vehicle, SBEC, is hemodialyzed with clearance of 55 mL/min. A 4-hour hemodialysis session does not remove a sufficient amount of voriconazole to warrant dose adjustment [see Dosage and Administration (2.6)].

Patients at Risk of Aspergillosis

The observed voriconazole pharmacokinetics in patients at risk of aspergillosis (mainly patients with malignant neoplasms of lymphatic or hematopoietic tissue) were similar to healthy subjects.

Drug Interaction Studies

Effects of Other Drugs on Voriconazole

Voriconazole is metabolized by the human hepatic cytochrome P450 enzymes CYP2C19, CYP2C9, and CYP3A4. Results of in vitro metabolism studies indicate that the affinity of voriconazole is highest for CYP2C19, followed by CYP2C9, and is appreciably lower for CYP3A4. Inhibitors or inducers of these three enzymes may increase or decrease voriconazole systemic exposure (plasma concentrations), respectively.

The systemic exposure to voriconazole is significantly reduced or is expected to be reduced by the concomitant administration of the following agents and their use is contraindicated:

Rifampin (potent CYP450 inducer)—Rifampin (600 mg once daily) decreased the steady state C_{max} and AUC_τ of voriconazole (200 mg every 12 hours × 7 days) by an average of 93% and 96%, respectively,
in healthy subjects. Doubling the dose of voriconazole to 400 mg every 12 hours does not restore adequate exposure to voriconazole during coadministration with rifampin. **Coadministration of voriconazole and rifampin is contraindicated [see Contraindications (4) and Warnings and Precautions (5.12)].**

Ritonavir (potent CYP450 inducer; CYP3A4 inhibitor and substrate)—The effect of the coadministration of voriconazole and ritonavir (400 mg and 100 mg) was investigated in two separate studies. High-dose ritonavir (400 mg every 12 hours for 9 days) decreased the steady state C_{max} and AUC_T of oral voriconazole (400 mg every 12 hours for 1 day, then 200 mg every 12 hours for 8 days) by an average of 66% and 82%, respectively, in healthy subjects. Low-dose ritonavir (100 mg every 12 hours for 9 days) decreased the steady state C_{max} and AUC_T of oral voriconazole (400 mg every 12 hours for 1 day, then 200 mg every 12 hours for 8 days) by an average of 24% and 39%, respectively, in healthy subjects. Although repeat oral administration of voriconazole did not have a significant effect on steady state C_{max} and AUC_T of high-dose ritonavir in healthy subjects, steady state C_{max} and AUC_T of low-dose ritonavir decreased slightly by 24% and 14% respectively, when administered concomitantly with oral voriconazole in healthy subjects. **Coadministration of voriconazole and high-dose ritonavir (400 mg every 12 hours) is contraindicated. Coadministration of voriconazole and low-dose ritonavir (100 mg every 12 hours) should be avoided, unless an assessment of the benefit/risk to the patient justifies the use of voriconazole [see Contraindications (4) and Warnings and Precautions (5.12)].**

St. John's Wort (CYP450 inducer; P-gp inducer)—In an independent published study in healthy volunteers who were given multiple oral doses of St. John's Wort (300 mg LI 160 extract three times daily for 15 days) followed by a single 400 mg oral dose of voriconazole, a 59% decrease in mean voriconazole AUC_{0–∞} was observed. In contrast, coadministration of single oral doses of St. John's Wort and voriconazole had no appreciable effect on voriconazole AUC_{0–∞}. Because long-term use of St. John's Wort could lead to reduced voriconazole exposure, **concomitant use of voriconazole with St. John's Wort is contraindicated [see Contraindications (4)].**

Carbamazepine and long-acting barbiturates (potent CYP450 inducers)—Although not studied in vitro or in vivo, carbamazepine and long-acting barbiturates (e.g., phenobarbital, mephobarbital) are likely to significantly decrease plasma voriconazole concentrations. **Coadministration of voriconazole with carbamazepine or long-acting barbiturates is contraindicated [see Contraindications (4) and Warnings and Precautions (5.12)].**

Significant drug interactions that may require voriconazole dosage adjustment, or frequent monitoring of voriconazole-related adverse events/toxicity:

Fluconazole (CYP2C9, CYP2C19 and CYP3A4 inhibitor): Concurrent administration of oral voriconazole (400 mg every 12 hours for 1 day, then 200 mg every 12 hours for 2.5 days) and oral fluconazole (400 mg on day 1, then 200 mg every 24 hours for 4 days) to 6 healthy male subjects resulted in an increase in C_{max} and AUC_T of voriconazole by an average of 57% (90% CI: 20%, 107%) and 79% (90% CI: 40%, 128%), respectively. In a follow-on clinical study involving 8 healthy male subjects, reduced dosing and/or frequency of voriconazole and fluconazole did not eliminate or diminish this effect. Concomitant administration of voriconazole and fluconazole at any dose is not recommended. Close monitoring for adverse events related to voriconazole is recommended if voriconazole is used sequentially after fluconazole, especially within 24 hours of the last dose of fluconazole [see Warnings and Precautions (5.12)].

Minor or no significant pharmacokinetic interactions that do not require dosage adjustment:

Cimetidine (non-specific CYP450 inhibitor and increases gastric pH)—Cimetidine (400 mg every 12 hours × 8 days) increased voriconazole steady state C_{max} and AUC_T by an average of 18% (90% CI: 6%, 32%) and 23% (90% CI: 13%, 33%), respectively, following oral doses of 200 mg every 12 hours × 7 days to healthy subjects.

Ranitidine (increases gastric pH)—Ranitidine (150 mg every 12 hours) had no significant effect on
voriconazole C_{max} and AUC_{τ} following oral doses of 200 mg every 12 hours \times 7 days to healthy subjects.

Macrolide antibiotics—Coadministration of **erythromycin** (CYP3A4 inhibitor; 1g every 12 hours for 7 days) or **azithromycin** (500 mg every 24 hours for 3 days) with voriconazole 200 mg every 12 hours for 14 days had no significant effect on voriconazole steady state C_{max} and AUC_{τ} in healthy subjects. The effects of voriconazole on the pharmacokinetics of either erythromycin or azithromycin are not known.

Effects of Voriconazole on Other Drugs

In vitro studies with human hepatic microsomes show that voriconazole inhibits the metabolic activity of the cytochrome P450 enzymes CYP2C19, CYP2C9, and CYP3A4. In these studies, the inhibition potency of voriconazole for CYP3A4 metabolic activity was significantly less than that of two other azoles, ketoconazole and itraconazole. *In vitro* studies also show that the major metabolite of voriconazole, voriconazole N-oxide, inhibits the metabolic activity of CYP2C9 and CYP3A4 to a greater extent than that of CYP2C19. Therefore, there is potential for voriconazole and its major metabolite to increase the systemic exposure (plasma concentrations) of other drugs metabolized by these CYP450 enzymes.

The systemic exposure of the following drugs is significantly increased or is expected to be significantly increased by coadministration of voriconazole and their use is contraindicated:

Sirolimus (CYP3A4 substrate)—Repeat dose administration of oral voriconazole (400 mg every 12 hours for 1 day, then 200 mg every 12 hours for 8 days) increased the C_{max} and AUC of sirolimus (2 mg single dose) an average of 7-fold (90% CI: 5.7, 7.5) and 11-fold (90% CI: 9.9, 12.6), respectively, in healthy male subjects. **Coadministration of voriconazole and sirolimus is contraindicated** [see Contraindications (4) and Warnings and Precautions (5.12)].

Cisapride, pimozide and quinidine (CYP3A4 substrates)—Although not studied *in vitro* or *in vivo*, concomitant administration of voriconazole with cisapride, pimozide or quinidine may result in inhibition of the metabolism of these drugs. Increased plasma concentrations of these drugs can lead to QT prolongation and rare occurrences of torsade de pointes. **Coadministration of voriconazole and cisapride, pimozide and quinidine is contraindicated** [see Contraindications (4) and Warnings and Precautions (5.12)].

Ergot alkaloids—Although not studied *in vitro* or *in vivo*, voriconazole may increase the plasma concentration of ergot alkaloids (ergotamine and dihydroergotamine) and lead to ergotism. **Coadministration of voriconazole with ergot alkaloids is contraindicated** [see Contraindications (4) and Warnings and Precautions (5.12)].

Everolimus (CYP3A4 substrate, P-gp substrate)—Although not studied *in vitro* or *in vivo*, voriconazole may increase plasma concentrations of everolimus, which could potentially lead to exacerbation of everolimus toxicity. Currently there are insufficient data to allow dosing recommendations in this situation. Therefore, co-administration of voriconazole with everolimus is not recommended [see Drug Interactions (7)].

Coadministration of voriconazole with the following agents results in increased exposure or is expected to result in increased exposure to these drugs. Therefore, careful monitoring and/or dosage adjustment of these drugs is needed:

Alfentanil (CYP3A4 substrate)—Coadministration of multiple doses of oral voriconazole (400 mg every 12 hours on day 1, 200 mg every 12 hours on day 2) with a single 20 mcg/kg intravenous dose of alfentanil with concomitant naloxone resulted in a 6-fold increase in mean alfentanil $AUC_{0-\infty}$ and a 4-fold prolongation of mean alfentanil elimination half-life, compared to when alfentanil was given alone. An increase in the incidence of delayed and persistent alfentanil-associated nausea and vomiting during co-administration of voriconazole and alfentanil was also observed. Reduced in the dose of alfentanil or other opiates that are also metabolized by CYP3A4 (e.g., sufentanil), and extended close monitoring
of patients for respiratory and other opiate-associated adverse events, may be necessary when any of these opiates is coadministered with voriconazole [see Warnings and Precautions (5.12)].

Fentanyl (CYP3A4 substrate): In an independent published study, concomitant use of voriconazole (400 mg every 12 hours on Day 1, then 200 mg every 12 hours on Day 2) with a single intravenous dose of fentanyl (5 µg/kg) resulted in an increase in the mean AUC from 0 to ∞ of fentanyl by 1.4-fold (range 0.81- to 2.04-fold). When voriconazole is co-administered with fentanyl IV, oral or transdermal dosage forms, extended and frequent monitoring of patients for respiratory depression and other fentanyl-associated adverse events is recommended, and fentanyl dosage should be reduced if warranted [see Warnings and Precautions (5.12)].

Oxycodone (CYP3A4 substrate): In an independent published study, coadministration of multiple doses of oral voriconazole (400 mg every 12 hours, on Day 1 followed by five doses of 200 mg every 12 hours on Days 2 to 4) with a single 10 mg oral dose of oxycodone on Day 3 resulted in an increase in the mean Cmax and AUC from 0 to τ of oxycodone by 1.7-fold (range 1.4- to 2.2-fold) and 3.6-fold (range 2.7- to 5.6-fold), respectively. The mean elimination half-life of oxycodone was also increased by 2.0-fold (range 1.4- to 2.5-fold). Voriconazole also increased the visual effects (heterophoria and miosis) of oxycodone. A reduction in oxycodone dosage may be needed during voriconazole treatment to avoid opioid related adverse effects. Extended and frequent monitoring for adverse effects associated with oxycodone and other long-acting opiates metabolized by CYP3A4 is recommended [see Warnings and Precautions (5.12)].

Cyclosporine (CYP3A4 substrate)—In stable renal transplant recipients receiving chronic cyclosporine therapy, concomitant administration of oral voriconazole (200 mg every 12 hours for 8 days) increased cyclosporine Cmax and AUCt an average of 1.1 times (90% CI: 0.9, 1.41) and 1.7 times (90% CI: 1.5, 2.0), respectively, as compared to when cyclosporine was administered without voriconazole. When initiating therapy with voriconazole in patients already receiving cyclosporine, it is recommended that the cyclosporine dose be reduced to one-half of the original dose and followed with frequent monitoring of the cyclosporine blood levels. Increased cyclosporine levels have been associated with nephrotoxicity. When voriconazole is discontinued, cyclosporine levels should be frequently monitored and the dose increased as necessary [see Warnings and Precautions (5.12)].

Methadone (CYP3A4, CYP2C19, CYP2C9 substrate)—Repeat dose administration of oral voriconazole (400 mg every 12 hours for 1 day, then 200 mg every 12 hours for 4 days) increased the Cmax and AUCt of pharmacologically active R-methadone by 31% (90% CI: 22%, 40%) and 47% (90% CI: 38%, 57%), respectively, in subjects receiving a methadone maintenance dose (30–100 mg every 24 hours). The Cmax and AUC of (S)-methadone increased by 65% (90% CI: 53%, 79%) and 103% (90% CI: 85%, 124%), respectively. Increased plasma concentrations of methadone have been associated with toxicity including QT prolongation. Frequent monitoring for adverse events and toxicity related to methadone is recommended during coadministration. Dose reduction of methadone may be needed [see Warnings and Precautions (5.12)].

Tacrolimus (CYP3A4 substrate)—Repeat oral dose administration of voriconazole (400 mg every 12 hours × 1 day, then 200 mg every 12 hours × 6 days) increased tacrolimus (0.1 mg/kg single dose) Cmax and AUCt in healthy subjects by an average of 2-fold (90% CI: 1.9, 2.5) and 3-fold (90% CI: 2.7, 3.8), respectively. When initiating therapy with voriconazole in patients already receiving tacrolimus, it is recommended that the tacrolimus dose be reduced to one-third of the original dose and followed with frequent monitoring of the tacrolimus blood levels. Increased tacrolimus levels have been associated with nephrotoxicity. When voriconazole is discontinued, tacrolimus levels should be carefully monitored and the dose increased as necessary [see Warnings and Precautions (5.12)].

Warfarin (CYP2C9 substrate)—Coadministration of voriconazole (300 mg every 12 hours × 12 days) with warfarin (30 mg single dose) significantly increased maximum prothrombin time by approximately 2 times that of placebo in healthy subjects. Close monitoring of prothrombin time or other suitable anticoagulation tests is recommended if warfarin and voriconazole are coadministered and the warfarin dose adjusted accordingly [see Warnings and Precautions (5.12)].
Oral Coumarin Anticoagulants (CYP2C9, CYP3A4 substrates)—Although not studied in vitro or in vivo, voriconazole may increase the plasma concentrations of coumarin anticoagulants and therefore may cause an increase in prothrombin time. If patients receiving coumarin preparations are treated simultaneously with voriconazole, the prothrombin time or other suitable anti-coagulation tests should be monitored at close intervals and the dosage of anticoagulants adjusted accordingly [see Warnings and Precautions (5.12)].

Statins (CYP3A4 substrates)—Although not studied clinically, voriconazole has been shown to inhibit lovastatin metabolism in vitro (human liver microsomes). Therefore, voriconazole is likely to increase the plasma concentrations of statins that are metabolized by CYP3A4. It is recommended that dose adjustment of the statin be considered during coadministration. Increased statin concentrations in plasma have been associated with rhabdomyolysis [see Warnings and Precautions (5.12)].

Benzodiazepines (CYP3A4 substrates)—Although not studied clinically, voriconazole has been shown to inhibit midazolam metabolism in vitro (human liver microsomes). Therefore, voriconazole is likely to increase the plasma concentrations of benzodiazepines that are metabolized by CYP3A4 (e.g., midazolam, triazolam, and alprazolam) and lead to a prolonged sedative effect. It is recommended that dose adjustment of the benzodiazepine be considered during coadministration [see Warnings and Precautions (5.12)].

Calcium Channel Blockers (CYP3A4 substrates)—Although not studied clinically, voriconazole has been shown to inhibit felodipine metabolism in vitro (human liver microsomes). Therefore, voriconazole may increase the plasma concentrations of calcium channel blockers that are metabolized by CYP3A4. Frequent monitoring for adverse events and toxicity related to calcium channel blockers is recommended during coadministration. Dose adjustment of the calcium channel blocker may be needed [see Warnings and Precautions (5.12)].

Sulfonylureas (CYP2C9 substrates)—Although not studied in vitro or in vivo, voriconazole may increase plasma concentrations of sulfonylureas (e.g., tolbutamide, glipizide, and glyburide) and therefore cause hypoglycemia. Frequent monitoring of blood glucose and appropriate adjustment (i.e., reduction) of the sulfonylurea dosage is recommended during coadministration [see Warnings and Precautions (5.12)].

Vinca Alkaloids (CYP3A4 substrates)—Although not studied in vitro or in vivo, voriconazole may increase the plasma concentrations of the vinca alkaloids (e.g., vincristine and vinblastine) and lead to neurotoxicity. Therefore, reserve azole antifungals, including voriconazole, for patients receiving a vinca alkaloid, including vincristine, who have no alternative antifungal treatment options [see Warnings and Precautions (5.12)].

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs; CYP2C9 substrates): In two independent published studies, single doses of ibuprofen (400 mg) and diclofenac (50 mg) were coadministered with the last dose of voriconazole (400 mg every 12 hours on Day 1, followed by 200 mg every 12 hours on Day 2). Voriconazole increased the mean C_{max} and AUC of the pharmacologically active isomer, S (+)-ibuprofen by 20% and 100%, respectively. Voriconazole increased the mean C_{max} and AUC of diclofenac by 114% and 78%, respectively.

A reduction in ibuprofen and diclofenac dosage may be needed during concomitant administration with voriconazole. Patients receiving voriconazole concomitantly with other NSAIDs (e.g., celecoxib, naproxen, lornoxicam, meloxicam) that are also metabolized by CYP2C9 should be carefully monitored for NSAID-related adverse events and toxicity, and dosage reduction should be made if warranted [see Warnings and Precautions (5.12)].

No significant pharmacokinetic interactions were observed when voriconazole was coadministered with the following agents. Therefore, no dosage adjustment for these agents is recommended:

Prednisolone (CYP3A4 substrate)—Voriconazole (200 mg every 12 hours × 30 days) increased C_{max} and AUC of prednisolone (60 mg single dose) by an average of 11% and 34%, respectively, in healthy subjects.
Digoxin (P-glycoprotein mediated transport)—Voriconazole (200 mg every 12 hours × 12 days) had no significant effect on steady state C_{max} and AUC$_{\text{T}}$ of digoxin (0.25 mg once daily for 10 days) in healthy subjects.

Mycophenolic acid (UDP-glucuronyl transferase substrate)—Voriconazole (200 mg every 12 hours × 5 days) had no significant effect on the C_{max} and AUC$_{\text{T}}$ of mycophenolic acid and its major metabolite, mycophenolic acid glucuronide after administration of a 1 gram single oral dose of mycophenolate mofetil.

Two-Way Interactions

Concomitant use of the following agents with voriconazole is contraindicated:

Rifabutin (potent CYP450 inducer)—Rifabutin (300 mg once daily) decreased the C_{max} and AUC$_{\text{T}}$ of voriconazole at 200 mg twice daily by an average of 67% (90% CI: 58%, 73%) and 79% (90% CI: 71%, 84%), respectively, in healthy subjects. During coadministration with rifabutin (300 mg once daily), the steady state C_{max} and AUC$_{\text{T}}$ of voriconazole following an increased dose of 400 mg twice daily were on average approximately 2 times higher, compared with voriconazole alone at 200 mg twice daily. Coadministration of voriconazole at 400 mg twice daily with rifabutin 300 mg twice daily increased the C_{max} and AUC$_{\text{T}}$ of rifabutin by an average of 3-times (90% CI: 2.2, 4.0) and 4 times (90% CI: 3.5, 5.4), respectively, compared to rifabutin given alone. **Coadministration of voriconazole and rifabutin is contraindicated** [see Contraindications (4)].

Significant drug interactions that may require dosage adjustment, frequent monitoring of drug levels and/or frequent monitoring of drug-related adverse events/toxicity:

Efavirenz, a non-nucleoside reverse transcriptase inhibitor (CYP450 inducer; CYP3A4 inhibitor and substrate)—Standard doses of voriconazole and efavirenz (400 mg every 24 hours or higher) must not be coadministered [see Drug Interactions (7)]. Steady state efavirenz (400 mg PO every 24 hours) decreased the steady state C_{max} and AUC$_{\text{T}}$ of voriconazole (400 mg PO every 12 hours for 1 day, then 200 mg PO every 12 hours for 8 days) by an average of 61% and 77%, respectively, in healthy male subjects. Voriconazole at steady state (400 mg PO every 12 hours for 1 day, then 200 mg every 12 hours for 8 days) increased the steady state C_{max} and AUC$_{\text{T}}$ of efavirenz (400 mg PO every 24 hours for 9 days) by an average of 38% and 44%, respectively, in healthy subjects.

The pharmacokinetics of adjusted doses of voriconazole and efavirenz were studied in healthy male subjects following administration of voriconazole (400 mg PO every 12 hours on Days 2 to 7) with efavirenz (300 mg PO every 24 hours on Days 1–7), relative to steady-state administration of voriconazole (400 mg for 1 day, then 200 mg PO every 12 hours for 2 days) or efavirenz (600 mg every 24 hours for 9 days). Coadministration of voriconazole 400 mg every 12 hours with efavirenz 300 mg every 24 hours, decreased voriconazole AUC$_{\text{T}}$ by 7% (90% CI: -23%, 13%) and increased C_{max} by 23% (90% CI: -1%, 53%); efavirenz AUC$_{\text{T}}$ was increased by 17% (90% CI: 6%, 29%) and C_{max} was equivalent. **Coadministration of standard doses of voriconazole and efavirenz (400 mg every 24 hours or higher) is contraindicated.** Voriconazole may be coadministered with efavirenz if the maintenance dose of voriconazole is increased to 400 mg every 12 hours and the efavirenz dose is decreased to 300 mg every 24 hours. When treatment with voriconazole is stopped, the initial dosage of efavirenz should be restored [see Dosage and Administration (2.7), Contraindications (4) and Drug Interactions (7)].

Phenytoin (CYP2C9 substrate and potent CYP450 inducer)—Repeat dose administration of phenytoin (300 mg once daily) decreased the steady state C_{max} and AUC$_{\text{T}}$ of orally administered voriconazole (200 mg every 12 hours × 14 days) by an average of 50% and 70%, respectively, in healthy subjects. Administration of a higher voriconazole dose (400 mg every 12 hours × 7 days) with phenytoin (300 mg once daily) resulted in comparable steady state voriconazole C_{max} and AUC$_{\text{T}}$ estimates as compared to when voriconazole was given at 200 mg every 12 hours without phenytoin.

Phenytoin may be coadministered with voriconazole if the maintenance dose of voriconazole is...
increased from 4 mg/kg to 5 mg/kg intravenously every 12 hours or from 200 mg to 400 mg orally, every 12 hours (100 mg to 200 mg orally, every 12 hours in patients less than 40 kg) [see Dosage and Administration (2.7) and Drug Interactions (7)].

Repeat dose administration of voriconazole (400 mg every 12 hours × 10 days) increased the steady state \(C_{\text{max}} \) and \(\text{AUC}_{\tau} \) of phenytoin (300 mg once daily) by an average of 70% and 80%, respectively, in healthy subjects. The increase in phenytoin \(C_{\text{max}} \) and \(\text{AUC} \) when coadministered with voriconazole may be expected to be as high as 2 times the \(C_{\text{max}} \) and \(\text{AUC} \) estimates when phenytoin is given without voriconazole. Therefore, frequent monitoring of plasma phenytoin concentrations and phenytoin-related adverse effects is recommended when phenytoin is coadministered with voriconazole [see Warnings and Precautions (5.12)].

Omeprazole (CYP2C19 inhibitor; CYP2C19 and CYP3A4 substrate)—Coadministration of omeprazole (40 mg once daily × 10 days) with oral voriconazole (400 mg every 12 hours × 1 day, then 200 mg every 12 hours × 9 days) increased the steady state \(C_{\text{max}} \) and \(\text{AUC}_{\tau} \) of voriconazole by an average of 15% (90% CI: 5%, 25%) and 40% (90% CI: 29%, 55%), respectively, in healthy subjects. No dosage adjustment of voriconazole is recommended.

Coadministration of voriconazole (400 mg every 12 hours × 1 day, then 200 mg × 6 days) with omeprazole (40 mg once daily × 7 days) to healthy subjects significantly increased the steady state \(C_{\text{max}} \) and \(\text{AUC}_{\tau} \) of omeprazole an average of 2 times (90% CI: 1.8, 2.6) and 4 times (90% CI: 3.3, 4.4), respectively, as compared to when omeprazole is given without voriconazole. When initiating voriconazole in patients already receiving omeprazole doses of 40 mg or greater, it is recommended that the omeprazole dose be reduced by one-half [see Warnings and Precautions (5.12)].

The metabolism of other proton pump inhibitors that are CYP2C19 substrates may also be inhibited by voriconazole and may result in increased plasma concentrations of these drugs.

Oral Contraceptives (CYP3A4 substrate; CYP2C19 inhibitor)—Coadministration of oral voriconazole (400 mg every 12 hours for 1 day, then 200 mg every 12 hours for 3 days) and oral contraceptive (Ortho-Novum 1/35® consisting of 35 mcg ethinyl estradiol and 1 mg norethindrone, every 24 hours) to healthy female subjects at steady state increased the \(C_{\text{max}} \) and \(\text{AUC}_{\tau} \) of ethinyl estradiol by an average of 36% (90% CI: 28%, 45%) and 61% (90% CI: 50%, 72%), respectively, and that of norethindrone by 15% (90% CI: 3%, 28%) and 53% (90% CI: 44%, 63%), respectively in healthy subjects. Voriconazole \(C_{\text{max}} \) and \(\text{AUC}_{\tau} \) increased by an average of 14% (90% CI: 3%, 27%) and 46% (90% CI: 32%, 61%), respectively. Monitoring for adverse events related to oral contraceptives, in addition to those for voriconazole, is recommended during coadministration [see Warnings and Precautions (5.12)].

No significant pharmacokinetic interaction was seen and no dosage adjustment of these drugs is recommended:

Indinavir (CYP3A4 inhibitor and substrate)—Repeat dose administration of indinavir (800 mg TID for 10 days) had no significant effect on voriconazole \(C_{\text{max}} \) and \(\text{AUC} \) following repeat dose administration (200 mg every 12 hours for 17 days) in healthy subjects.

Repeat dose administration of voriconazole (200 mg every 12 hours for 7 days) did not have a significant effect on steady state \(C_{\text{max}} \) and \(\text{AUC}_{\tau} \) of indinavir following repeat dose administration (800 mg TID for 7 days) in healthy subjects.

Other Two-Way Interactions Expected to be Significant Based on In Vitro and In Vivo Findings:

Other HIV Protease Inhibitors (CYP3A4 substrates and inhibitors)—In vitro studies (human liver microsomes) suggest that voriconazole may inhibit the metabolism of HIV protease inhibitors (e.g., saquinavir, amprenavir and nelfinavir). In vitro studies (human liver microsomes) also show that the metabolism of voriconazole may be inhibited by HIV protease inhibitors (e.g., saquinavir and amprenavir). Patients should be frequently monitored for drug toxicity during the coadministration of voriconazole and HIV protease inhibitors [see Warnings and Precautions (5.12)].

Other Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) (CYP3A4 substrates, inhibitors or
CYP450 inducers—*In vitro* studies (human liver microsomes) show that the metabolism of voriconazole may be inhibited by a NNRTI (e.g., delavirdine). The findings of a clinical voriconazole-efavirenz drug interaction study in healthy male subjects suggest that the metabolism of voriconazole may be induced by a NNRTI. This *in vivo* study also showed that voriconazole may inhibit the metabolism of a NNRTI [see Drug Interactions (7) and Warnings and Precautions (5.1)]. Patients should be frequently monitored for drug toxicity during the coadministration of voriconazole and other NNRTIs (e.g., nevirapine and delavirdine) [see Warnings and Precautions (5.12)]. Dose adjustments are required when voriconazole is co-administered with efavirenz [see Drug Interactions (7) and Warnings and Precautions (5.12)].

12.4 Microbiology

Mechanism of Action

Voriconazole is an azole antifungal drug. The primary mode of action of voriconazole is the inhibition of fungal cytochrome P-450-mediated 14 alpha-lanosterol demethylation, an essential step in fungal ergosterol biosynthesis. The accumulation of 14 alpha-methyl sterols correlates with the subsequent loss of ergosterol in the fungal cell wall and may be responsible for the antifungal activity of voriconazole.

Resistance

A potential for development of resistance to voriconazole is well known. The mechanisms of resistance may include mutations in the gene ERG11 (encodes for the target enzyme, lanosterol 14-α-demethylase), upregulation of genes encoding the ATP-binding cassette efflux transporters i.e., Candida drug resistance (CDR) pumps and reduced access of the drug to the target, or some combination of those mechanisms. The frequency of drug resistance development for the various fungi for which this drug is indicated is not known.

Fungal isolates exhibiting reduced susceptibility to fluconazole or itraconazole may also show reduced susceptibility to voriconazole, suggesting cross-resistance can occur among these azoles. The relevance of cross-resistance and clinical outcome has not been fully characterized. Clinical cases where azole cross-resistance is demonstrated may require alternative antifungal therapy.

Antimicrobial Activity

Voriconazole has been shown to be active against most isolates of the following microorganisms, both *in vitro* and in clinical infections.

Aspergillus fumigatus
Aspergillus flavus
Aspergillus niger
Aspergillus terreus
Candida albicans
Candida glabrata (In clinical studies, the voriconazole MIC₉₀ was 4 µg/mL)¹
Candida krusei
Candida parapsilosis
Candida tropicalis
Fusarium spp. including *Fusarium solani*
Scedosporium apiospermum

The following data are available, **but their clinical significance is unknown**. At least 90 percent of the following fungi exhibit an *in vitro* minimum inhibitory concentration (MIC) less than or equal to the susceptible breakpoint for voriconazole against isolates of similar genus or organism group.

However, the effectiveness of voriconazole in treating clinical infections due to these fungi has not been established in adequate and well-controlled clinical trials:

Candida lusitaniae
Candida guilliermondii

1 In clinical studies, voriconazole MIC$_{90}$ for C. glabrata baseline isolates was 4 µg/mL; 13/50 (26%) C. glabrata baseline isolates were resistant (MIC ≥4 µg/mL) to voriconazole. However, based on 1054 isolates tested in surveillance studies the MIC$_{90}$ was 1 µg/mL.

Susceptibility Testing

For specific information regarding susceptibility test interpretive criteria and associated test methods and quality control standards recognized by FDA for this drug, please see: https://www.fda.gov/STIC.

12.5 Pharmacogenomics

CYP2C19, significantly involved in the metabolism of voriconazole, exhibits genetic polymorphism. Approximately 15–20% of Asian populations may be expected to be poor metabolizers. For Caucasians and Blacks, the prevalence of poor metabolizers is 3–5%. Studies conducted in Caucasian and Japanese healthy subjects have shown that poor metabolizers have, on average, 4-fold higher voriconazole exposure (AUC$_0$) than their homozygous extensive metabolizer counterparts. Subjects who are heterozygous extensive metabolizers have, on average, 2-fold higher voriconazole exposure than their homozygous extensive metabolizer counterparts [see Clinical Pharmacology (12.3)].

13 NONCLINICAL TOXICOLOGY

13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility

Two-year carcinogenicity studies were conducted in rats and mice. Rats were given oral doses of 6, 18 or 50 mg/kg voriconazole, or 0.2, 0.6, or 1.6 times the RMD on a mg/m2 basis. Hepatocellular adenomas were detected in females at 50 mg/kg and hepatocellular carcinomas were found in males at 6 and 50 mg/kg. Mice were given oral doses of 10, 30 or 100 mg/kg voriconazole, or 0.1, 0.4, or 1.4 times the RMD on a mg/m2 basis. In mice, hepatocellular adenomas were detected in males and females and hepatocellular carcinomas were detected in males at 1.4 times the RMD of voriconazole.

Voriconazole demonstrated clastogenic activity (mostly chromosome breaks) in human lymphocyte cultures in vitro. Voriconazole was not genotoxic in the Ames assay, CHO HGPRT assay, the mouse micronucleus assay or the in vivo DNA repair test (Unscheduled DNA Synthesis assay).

Voriconazole administration induced no impairment of male or female fertility in rats dosed at 50 mg/kg, or 1.6 times the RMD.

14 CLINICAL STUDIES

Voriconazole, administered orally or parenterally, has been evaluated as primary or salvage therapy in 520 patients aged 12 years and older with infections caused by Aspergillus spp., Fusarium spp., and Scedosporium spp.

14.1 Invasive Aspergillosis (IA)

Voriconazole was studied in patients for primary therapy of IA (randomized, controlled study 307/602), for primary and salvage therapy of aspergillosis (non-comparative study 304) and for treatment of patients with IA who were refractory to, or intolerant of, other antifungal therapy (non-comparative study 309/604).

Study 307/602 – Primary Therapy of Invasive Aspergillosis

The efficacy of voriconazole compared to amphotericin B in the primary treatment of acute IA was demonstrated in 277 patients treated for 12 weeks in a randomized, controlled study (Study 307/602). The majority of study patients had underlying hematologic malignancies, including bone marrow transplantation. The study also included patients with solid organ transplantation, solid tumors, and
AIDS. The patients were mainly treated for definite or probable IA of the lungs. Other aspergillosis infections included disseminated disease, CNS infections and sinus infections. Diagnosis of definite or probable IA was made according to criteria modified from those established by the National Institute of Allergy and Infectious Diseases Mycoses Study Group/European Organisation for Research and Treatment of Cancer (NIAID MSG/EORTC).

Voriconazole was administered intravenously with a loading dose of 6 mg/kg every 12 hours for the first 24 hours followed by a maintenance dose of 4 mg/kg every 12 hours for a minimum of 7 days. Therapy could then be switched to the oral formulation at a dose of 200 mg every 12 hours. Median duration of IV voriconazole therapy was 10 days (range 2–85 days). After IV voriconazole therapy, the median duration of PO voriconazole therapy was 76 days (range 2–232 days).

Patients in the comparator group received conventional amphotericin B as a slow infusion at a daily dose of 1.0–1.5 mg/kg/day. Median duration of IV amphotericin therapy was 12 days (range 1–85 days). Treatment was then continued with OLAT, including itraconazole and lipid amphotericin B formulations. Although initial therapy with conventional amphotericin B was to be continued for at least two weeks, actual duration of therapy was at the discretion of the investigator. Patients who discontinued initial randomized therapy due to toxicity or lack of efficacy were eligible to continue in the study with OLAT treatment.

A satisfactory global response at 12 weeks (complete or partial resolution of all attributable symptoms, signs, radiographic/bronchoscopic abnormalities present at baseline) was seen in 53% of voriconazole treated patients compared to 32% of amphotericin B treated patients (Table 15). A benefit of voriconazole compared to amphotericin B on patient survival at Day 84 was seen with a 71% survival rate on voriconazole compared to 58% on amphotericin B (Table 13).

Table 13 also summarizes the response (success) based on mycological confirmation and species.

Table 13: Overall Efficacy and Success by Species in the Primary Treatment of Acute Invasive Aspergillosis Study 307/602

<table>
<thead>
<tr>
<th></th>
<th>Voriconazole</th>
<th>Amphot B *</th>
<th>Stratified Difference (95% CI) †</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n/N (%)</td>
<td>n/N (%)</td>
<td></td>
</tr>
<tr>
<td>Efficacy as Primary Therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satisfactory Global Response ‡</td>
<td>76/144 (53)</td>
<td>42/133 (32)</td>
<td>21.8% (10.5%, 33.0%) p<0.0001</td>
</tr>
<tr>
<td>Survival at Day 84 §</td>
<td>102/144 (71)</td>
<td>77/133 (58)</td>
<td>13.1% (2.1%, 24.2%)</td>
</tr>
<tr>
<td>Success by Species</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall success</td>
<td>76/144 (53)</td>
<td>42/133 (32)</td>
<td></td>
</tr>
<tr>
<td>Mycologically confirmed¶</td>
<td>37/84 (44)</td>
<td>16/67 (24)</td>
<td></td>
</tr>
<tr>
<td>Aspergillus spp.#</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. fumigatus</td>
<td>28/63 (44)</td>
<td>12/47 (26)</td>
<td></td>
</tr>
<tr>
<td>A. flavus</td>
<td>3/6</td>
<td>4/9</td>
<td></td>
</tr>
<tr>
<td>A. terreus</td>
<td>2/3</td>
<td>0/3</td>
<td></td>
</tr>
<tr>
<td>A. niger</td>
<td>1/4</td>
<td>0/9</td>
<td></td>
</tr>
<tr>
<td>A. nidulans</td>
<td>1/1</td>
<td>0/0</td>
<td></td>
</tr>
</tbody>
</table>

* Amphotericin B followed by other licensed antifungal therapy
Study 304 – Primary and Salvage Therapy of Aspergillosis

In this non-comparative study, an overall success rate of 52% (26/50) was seen in patients treated with voriconazole for primary therapy. Success was seen in 17/29 (59%) with Aspergillus fumigatus infections and 3/6 (50%) patients with infections due to non-\textit{fumigatus} species [A. flavus (1/1); A. nidulans (0/2); A. niger (2/2); A. terreus (0/1)]. Success in patients who received voriconazole as salvage therapy is presented in Table 14.

Study 309/604 – Treatment of Patients with Invasive Aspergillosis who were Refractory to, or Intolerant of, other Antifungal Therapy

Additional data regarding response rates in patients who were refractory to, or intolerant of, other antifungal agents are also provided in Table 16. In this non-comparative study, overall mycological eradication for culture-documented infections due to \textit{fumigatus} and non-\textit{fumigatus} species of \textit{Aspergillus} was 36/82 (44%) and 12/30 (40%), respectively, in voriconazole treated patients. Patients had various underlying diseases and species other than \textit{A. fumigatus} contributed to mixed infections in some cases.

For patients who were infected with a single pathogen and were refractory to, or intolerant of, other antifungal agents, the satisfactory response rates for voriconazole in studies 304 and 309/604 are presented in Table 14.

Table 14: Combined Response Data in Salvage Patients with Single Aspergillus Species (Studies 304 and 309/604)

<table>
<thead>
<tr>
<th>Species</th>
<th>Success n/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{A. fumigatus}</td>
<td>43/97 (44%)</td>
</tr>
<tr>
<td>\textit{A. flavus}</td>
<td>5/12</td>
</tr>
<tr>
<td>\textit{A. nidulans}</td>
<td>1/3</td>
</tr>
<tr>
<td>\textit{A. niger}</td>
<td>4/5</td>
</tr>
<tr>
<td>\textit{A. terreus}</td>
<td>3/8</td>
</tr>
<tr>
<td>\textit{A. versicolor}</td>
<td>0/1</td>
</tr>
</tbody>
</table>

Nineteen patients had more than one species of \textit{Aspergillus} isolated. Success was seen in 4/17 (24%) of these patients.

14.2 Candidemia in Non-neutropenic Patients and Other Deep Tissue \textit{Candida} Infections

Voriconazole was compared to the regimen of amphotericin B followed by fluconazole in Study 608, an open-label, comparative study in noneutropenic patients with candidemia associated with clinical signs of infection. Patients were randomized in 2:1 ratio to receive either voriconazole (n=283) or the regimen of amphotericin B followed by fluconazole (n=139). Patients were treated with randomized study drug for a median of 15 days. Most of the candidemia in patients evaluated for efficacy was caused by \textit{C. albicans} (46%), followed by \textit{C. tropicalis} (19%), \textit{C. parapsilosis} (17%), \textit{C. glabrata} (15%), and \textit{C. krusei} (1%).

An independent Data Review Committee (DRC), blinded to study treatment, reviewed the clinical and mycological data from this study, and generated one assessment of response for each patient. A
A successful response required all of the following: resolution or improvement in all clinical signs and symptoms of infection, blood cultures negative for Candida, infected deep tissue sites negative for Candida or resolution of all local signs of infection, and no systemic antifungal therapy other than study drug. The primary analysis, which counted DRC-assessed successes at the fixed time point (12 weeks after End of Therapy [EOT]), demonstrated that voriconazole was comparable to the regimen of amphotericin B followed by fluconazole (response rates of 41% and 41%, respectively) in the treatment of candidemia. Patients who did not have a 12-week assessment for any reason were considered a treatment failure.

The overall clinical and mycological success rates by Candida species in Study 150-608 are presented in Table 15.

Table 15: Overall Success Rates Sustained From EOT To The Fixed 12-Week Follow-Up Time Point By Baseline Pathogen*,†

<table>
<thead>
<tr>
<th>Baseline Pathogen</th>
<th>Clinical and Mycological Success (%)</th>
<th>Voriconazole</th>
<th>Amphotericin B --> Fluconazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>46/107 (43%)</td>
<td>30/63 (48%)</td>
<td></td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>17/53 (32%)</td>
<td>1/16 (6%)</td>
<td></td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>24/45 (53%)</td>
<td>10/19 (53%)</td>
<td></td>
</tr>
<tr>
<td>C. glabrata</td>
<td>12/36 (33%)</td>
<td>7/21 (33%)</td>
<td></td>
</tr>
<tr>
<td>C. krusei</td>
<td>1/4</td>
<td>0/1</td>
<td></td>
</tr>
</tbody>
</table>

* A few patients had more than one pathogen at baseline.
† Patients who did not have a 12-week assessment for any reason were considered a treatment failure.

In a secondary analysis, which counted DRC-assessed successes at any time point (EOT, or 2, 6, or 12 weeks after EOT), the response rates were 65% for voriconazole and 71% for the regimen of amphotericin B followed by fluconazole.

In Studies 608 and 309/604 (non-comparative study in patients with invasive fungal infections who were refractory to, or intolerant of, other antifungal agents), voriconazole was evaluated in 35 patients with deep tissue Candida infections. A favorable response was seen in 4 of 7 patients with intra-abdominal infections, 5 of 6 patients with kidney and bladder wall infections, 3 of 3 patients with deep tissue abscess or wound infection, 1 of 2 patients with pneumonia/pleural space infections, 2 of 4 patients with skin lesions, 1 of 1 patients with mixed intra-abdominal and pulmonary infection, 1 of 2 patients with suppurrative phlebitis, 1 of 3 patients with hepatosplenic infection, 1 of 5 patients with osteomyelitis, 0 of 1 with liver infection, and 0 of 1 with cervical lymph node infection.

14.3 Esophageal Candidiasis (EC)

The efficacy of oral voriconazole 200 mg twice daily compared to oral fluconazole 200 mg once daily in the primary treatment of EC was demonstrated in Study 150-305, a double-blind, double-dummy study in immunocompromised patients with endoscopically-proven EC. Patients were treated for a median of 15 days (range 1 to 49 days). Outcome was assessed by repeat endoscopy at end of treatment (EOT). A successful response was defined as a normal endoscopy at EOT or at least a 1 grade improvement over baseline endoscopic score. For patients in the Intent-to-Treat (ITT) population with only a baseline endoscopy, a successful response was defined as symptomatic cure or improvement at EOT compared to baseline. Voriconazole and fluconazole (200 mg once daily) showed comparable efficacy rates against EC, as presented in Table 16.

Table 16: Success Rates in Patients Treated for Esophageal Candidiasis
Population	Voriconazole	Fluconazole	Difference % (95% CI)*
PP† | 113/115 (98.2%) | 134/141 (95.0%) | 3.2 (-1.1, 7.5)
ITT‡ | 175/200 (87.5%) | 171/191 (89.5%) | -2.0 (-8.3, 4.3)

* Confidence Interval for the difference (Voriconazole – Fluconazole) in success rates.
† PP (Per Protocol) patients had confirmation of Candida esophagitis by endoscopy, received at least 12 days of treatment, and had a repeat endoscopy at EOT (end of treatment).
‡ ITT (Intent to Treat) patients without endoscopy or clinical assessment at EOT were treated as failures.

Microbiologic success rates by Candida species are presented in Table 17.

Table 17: Clinical and Mycological Outcome by Baseline Pathogen in Patients with Esophageal Candidiasis (Study-150-305)

<table>
<thead>
<tr>
<th>Pathogen*</th>
<th>Favorable endoscopic response†</th>
<th>Mycological eradication†</th>
<th>Favorable endoscopic response†</th>
<th>Mycological eradication†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Success/Total (%)</td>
<td>Eradication/Total (%)</td>
<td>Success/Total (%)</td>
<td>Eradication/Total (%)</td>
</tr>
<tr>
<td>C. albicans</td>
<td>134/140 (96%)</td>
<td>90/107 (84%)</td>
<td>147/156 (94%)</td>
<td>91/115 (79%)</td>
</tr>
<tr>
<td>C. glabrata</td>
<td>8/8 (100%)</td>
<td>4/7 (57%)</td>
<td>4/4 (100%)</td>
<td>1/4 (25%)</td>
</tr>
<tr>
<td>C. krusei</td>
<td>1/1</td>
<td>1/1</td>
<td>2/2 (100%)</td>
<td>0/0</td>
</tr>
</tbody>
</table>

* Some patients had more than one species isolated at baseline.
† Patients with endoscopic and/or mycological assessment at end of therapy.

14.4 Other Serious Fungal Pathogens

In pooled analyses of patients, voriconazole was shown to be effective against the following additional fungal pathogens:

Scedosporium apiospermum - Successful response to voriconazole therapy was seen in 15 of 24 patients (63%). Three of these patients relapsed within 4 weeks, including 1 patient with pulmonary, skin and eye infections, 1 patient with cerebral disease, and 1 patient with skin infection. Ten patients had evidence of cerebral disease and 6 of these had a successful outcome (1 relapse). In addition, a successful response was seen in 1 of 3 patients with mixed organism infections.

Fusarium spp. - Nine of 21 (43%) patients were successfully treated with voriconazole. Of these 9 patients, 3 had eye infections, 1 had an eye and blood infection, 1 had a skin infection, 1 had a blood infection alone, 2 had sinus infections, and 1 had disseminated infection (pulmonary, skin, hepatosplenic). Three of these patients (1 with disseminated disease, 1 with an eye infection and 1 with a blood infection) had *Fusarium solani* and were complete successes. Two of these patients relapsed, 1 with a sinus infection and profound neutropenia and 1 post surgical patient with blood and eye infections.

14.5 Pediatric Studies

A total of 22 patients aged 12 to 18 years with IA were included in the adult therapeutic studies. Twelve out of 22 (55%) patients had successful response after treatment with a maintenance dose of voriconazole 4 mg/kg every 12 hours.

Fifty-three pediatric patients aged 2 to less than 18 years old were treated with voriconazole in two prospective, open-label, non-comparative, multicenter clinical studies.

One study was designed to enroll pediatric patients with IA or infections with rare molds (such as
Scedosporium or Fusarium). Patients aged 2 to less than 12 years and 12 to 14 years with body weight less than 50 kg received an intravenous VFEND loading dose of 9 mg/kg every 12 hours for the first 24-hours followed by an 8 mg/kg intravenous maintenance dose every 12 hours. After completing 7 days of intravenous therapy patients had an option to switch to oral VFEND. The oral maintenance dose was 9 mg/kg every 12 hours (maximum dose of 350 mg). All other pediatric patients aged 12 to less than 18 years received the adult VFEND dosage regimen. Patients received VFEND for at least 6 weeks and up to a maximum of 12 weeks.

The study enrolled 31 patients with possible, proven, or probable IA. Fourteen of 31 patients, 5 of whom were 2 to less than 12 years old and 9 of whom were 12 to less than 18 years old, had proven or probable IA and were included in the modified intent-to-treat (MITT) efficacy analyses. No patients with rare mold were enrolled. A successful global response was defined as resolution or improvement in clinical signs and symptoms and at least 50% resolution of radiological lesions attributed to IA. The overall rate of successful global response at 6 weeks in the MITT population is presented in Table 18 below.

Table 18: Global Response * in Patients with Invasive Aspergillosis, Modified Intent-to-Treat (MITT) † Population

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Global Response at Week 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ages 2–<12 years N=5</td>
</tr>
<tr>
<td>Number of successes, n (%)</td>
<td>2 (40%)</td>
</tr>
</tbody>
</table>

* Global response rate was defined as the number of subjects with a successful response (complete or partial) as a percentage of all subjects (including subjects with an indeterminate or missing response) at 6 weeks in the MITT population.

† The Modified Intent-to-Treat (MITT) population was defined as all subjects who received at least 1 dose of study drug and who were diagnosed with proven or probable IA as defined by the modified EORTC/MSG criteria.

The second study enrolled 22 patients with invasive candidiasis including candidemia (ICC) and EC requiring either primary or salvage therapy. Patients with ICC aged 2 to less than 12 years and 12 to 14 years with body weight less than 50 kg received an intravenous VFEND loading dose of 9 mg/kg every 12 hours for the first 24 hours followed by an 8 mg/kg intravenous maintenance dose every 12-hours. After completing 5 days of intravenous therapy patients had an option to switch to oral VFEND. The oral maintenance dose was 9 mg/kg every 12 hours (maximum dose of 350 mg). All other pediatric patients aged 12 to less than 18 years received the adult VFEND dosage regimen. VFEND was administered for at least 14 days after the last positive culture. A maximum of 42 days of treatment was permitted.

Patients with primary or salvage EC aged 2 to less than 12 years and 12 to 14 years with body weight less than 50 kg received an intravenous VFEND dose of 4 mg/kg every 12 hours followed by an oral VFEND dose of 9 mg/kg every 12 hours (maximum dose of 350 mg) when criteria for oral switch were met. All other pediatric patients aged 12 to less than 18 years received the adult VFEND dosage regimen. VFEND was administered for at least 7 days after the resolution of clinical signs and symptoms. A maximum of 42 days of treatment was permitted.

For EC, study treatment was initiated without a loading dose of intravenous voriconazole. Seventeen of these patients had confirmed Candida infection and were included in the MITT efficacy analyses. Of the 17 patients included in the MITT analyses, 9 were 2 to less than 12 years old (7 with ICC and 2 with EC) and 8 were 12 to less than 18 years old (all with EC). For ICC and EC, a successful global response was defined as clinical cure or improvement with microbiological eradication or presumed eradication. The
overall rate of successful global response at EOT in the MITT population is presented in Table 19 below.

**Table 19: Global Response* at the End of Treatment in the Treatment of Invasive Candidiasis with Candidemia and Esophageal Candidiasis Modified Intent-to-Treat (MITT) Population†

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Global Response at End of Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EC N=10</td>
</tr>
<tr>
<td>Ages 2–<12</td>
<td>N=2</td>
</tr>
<tr>
<td>Ages 12–<18</td>
<td>N=8</td>
</tr>
<tr>
<td>Overall</td>
<td>N=10</td>
</tr>
<tr>
<td>Overall</td>
<td>N=7</td>
</tr>
</tbody>
</table>

| Number of successes, n (%) | 2 (100%) | 5 (63%) | 7 (70%) | 6 (86%) |

* Global response was determined based on the investigator's assessment of clinical and microbiological response in the Modified Intent-to-Treat (MITT) analysis population at end of treatment. Subjects with missing data or whose response was deemed indeterminate were considered failures.

† The MITT population was defined as all subjects who received at least 1 dose of study drug and who had microbiologically confirmed invasive candidiasis with candidemia (ICC) and EC, or subjects with EC who had at least confirmation of oropharyngeal candidiasis without confirmation on esophagoscopy.

‡ All subjects with ICC were aged 2 to less than 12.

16 HOW SUPPLIED/STORAGE AND HANDLING

16.1 How Supplied

Powder for Solution for Injection

VFEND I.V. for Injection is supplied in a single-dose vial as a sterile lyophilized powder equivalent to 200 mg voriconazole and 3,200 mg sulfobutyl ether beta-cyclodextrin sodium (SBECD). It does not contain preservatives and is not made with natural rubber latex. Individually packaged vials of 200 mg VFEND I.V. (NDC 0049-3190-38)

16.2 Storage

VFEND I.V. for Injection unreconstituted vials should be stored at 15°C to 30°C (59°F to 86°F) [see USP Controlled Room Temperature]. VFEND is a single dose unpreserved sterile lyophile. From a microbiological point of view, following reconstitution of the lyophile with Water for Injection, the reconstituted solution should be used immediately. If not used immediately, in-use storage times and conditions prior to use are the responsibility of the user and should not be longer than 24 hours at 2°C to 8°C (36°F to 46°F). Chemical and physical in-use stability has been demonstrated for 24 hours at 2°C to 8°C (36°F to 46°F). This medicinal product is for single use only and any unused solution should be discarded. Only clear solutions without particles should be used [see Dosage and Administration (2.1)].

17 PATIENT COUNSELING INFORMATION

Advise the patient to read the FDA-approved patient labeling (Patient Information).

Embryo-Fetal Toxicity

- Advise female patients of the potential risks to a fetus.
- Advise females of reproductive potential to use effective contraception during treatment with
VFEND.

This product's label may have been updated. For current full prescribing information, please visit www.pfizer.com.

Distributed by
Roerig
Division of Pfizer Inc
New York, NY 10017

PATIENT INFORMATION

VFEND®

(VEE-fend)

(*voriconazole*)

for injection, for intravenous use

Read the Patient Information that comes with VFEND before you start taking it and each time you get a refill. There may be new information. This information does not take the place of talking with your healthcare provider about your condition or treatment.

What is VFEND?

VFEND is a prescription medicine used to treat certain serious fungal infections in your blood and body. These infections are called "aspergillosis," "esophageal candidiasis," "Scedosporium," "Fusarium," and "candidemia". It is not known if VFEND is safe and effective in children younger than 2 years old.

Do not take VFEND if you:

- **are allergic to voriconazole or any of the ingredients in VFEND.** See the end of this leaflet for a complete list of ingredients in VFEND.
- **are taking any of the following medicines:**

 - cisapride
 - sirolimus
 - long-acting barbiturates like phenobarbital
 - rifabutin
 - pimozide
 - rifampin
 - efavirenz
 - ergotamine, dihydroergotamine (ergot alkaloids)
 - quinidine
 - carbamazepine
 - ritonavir
 - St. John's Wort (herbal supplement)

 Ask your healthcare provider or pharmacist if you are not sure if you are taking any of the medicines listed above.

Do not start taking a new medicine without talking to your healthcare provider or pharmacist.

Before you take VFEND, tell your healthcare provider about all of your medical conditions, including if you:

- have or ever had heart disease, or an abnormal heart rate or rhythm. Your healthcare provider may order a test to check your heart (EKG) before starting VFEND.
- have liver or kidney problems. Your healthcare provider may do blood tests to make sure you can take VFEND.
- have trouble digesting dairy products, lactose (milk sugar), or regular table sugar. VFEND tablets contain lactose. VFEND liquid contains sucrose (table sugar).
- are pregnant or plan to become pregnant. VFEND can harm your unborn baby. Talk to your...
healthcare provider if you are pregnant or plan to become pregnant. Women who can become pregnant should use effective birth control while taking VFEND. Talk to your healthcare provider about birth control methods that may be right for you.

- are breast-feeding or plan to breast-feed. It is not known if VFEND passes into breast milk. Talk to your healthcare provider about the best way to feed your baby if you take VFEND.

Tell your healthcare provider about all the medicines you take, including prescription and over-the-counter medicines, vitamins and herbal supplements. VFEND may affect the way other medicines work, and other medicines may affect how VFEND works. Know what medicines you take. Keep a list of them to show your healthcare provider or pharmacist when you get a new medicine.

How should I take VFEND?
- VFEND may be prescribed to you as:
 - VFEND I.V. (intravenous infusion) or
 - VFEND tablets or
 - VFEND oral suspension
- VFEND I.V. will be given to you by a healthcare provider over 1 to 2 hours.
- Take VFEND tablets or oral suspension exactly as your healthcare provider tells you to.
- Take VFEND tablets or oral suspension at least 1 hour before or at least 1 hour after meals.
- VFEND oral suspension will be mixed for you by your pharmacist. Shake the bottle of VFEND oral suspension for 10 seconds each time before you use it.
- Only use the oral dispenser that comes with your VFEND oral suspension to administer your medicine.
- Do not mix VFEND oral suspension with any other medicine, flavored liquid, or syrup.
- If you take too much VFEND, call your healthcare provider or go to the nearest hospital emergency room.

What should I avoid while taking VFEND?
- You should not drive at night while taking VFEND. VFEND can cause changes in your vision such as blurring or sensitivity to light.
- Do not drive or operate machinery, or do other dangerous activities until you know how VFEND affects you.
- Avoid direct sunlight. VFEND can make your skin sensitive to the sun and the light from sunlamps and tanning beds. You could get a severe sunburn. Use sunscreen and wear a hat and clothes that cover your skin if you have to be in sunlight. Talk to your healthcare provider if you get sunburn.

What are possible side effects of VFEND?
- VFEND may cause serious side effects including:
 - liver problems. Symptoms of liver problems may include:
 - itchy skin
 - flu-like symptoms
 - yellowing of your eyes
 - nausea or vomiting
 - feeling very tired
 - vision changes. Symptoms of vision changes may include:
 - blurred vision
 - changes in the way you see colors
 - sensitivity to light (photophobia)
 - serious heart problems. VFEND may cause changes in your heart rate or rhythm, including your heart stopping (cardiac arrest).
 - allergic reactions. Symptoms of an allergic reaction may include:
 - feels like your heart is
kidney problems. VFEND may cause new or worse problems with kidney function, including kidney failure. Your healthcare provider should check your kidney function while you are taking VFEND. Your healthcare provider will decide if you can keep taking VFEND.

serious skin reactions. Symptoms of serious skin reactions may include:
- rash or hives
- mouth sores
- blistering or peeling of your skin
- trouble swallowing or breathing

Call your healthcare provider or go to the nearest hospital emergency room right away if you have any of the symptoms listed above.

The most common side effects of VFEND in adults include:
- vision changes
- nausea
- hallucinations (seeing or hearing things that are not there)
- rash
- headache
- abnormal liver function tests
- chills
- vomiting
- fast heart beat (tachycardia)
- fever

The most common side effects of VFEND in children include:
- fever
- diarrhea
- low platelet counts
- abnormal liver function tests
- low blood calcium levels
- low blood phosphate levels
- vision changes
- rash
- stomach pain
- high blood pressure
- cough
- low blood pressure
- high blood sugar levels
- headache
- fast heart beat (tachycardia)
- nose bleeds
- low blood potassium levels
- Inflammation of mucous membranes
- constipation
- low blood magnesium levels
- Fullness of the stomach area
- vomiting
- nausea

Tell your healthcare provider if you have any side effect that bothers you or that does not go away. These are not all the possible side effects of VFEND.

Call your doctor for medical advice about side effects. You may report side effects to FDA at 1-800-FDA-1088.

How should I store VFEND?
- Store VFEND tablets and liquid at room temperature, 59°F to 86°F (15°C to 30°C). Do not refrigerate or freeze.
- VFEND suspension should be thrown away (discarded) after 14 days.
- Keep VFEND tablets and oral suspension in a tightly closed container.
- Safely throw away medicine that is out of date or no longer needed.
- Keep VFEND, as well as all other medicines, out of the reach of children.

General information about the safe and effective use of VFEND.
Medicines are sometimes prescribed for purposes other than those listed in a Patient Information leaflet. Do not use VFEND for a condition for which it was not prescribed. Do not give VFEND to other people, even if they have the same symptoms that you have. It may harm them. You can ask your healthcare provider or pharmacist for information about VFEND that is written for...
What are the ingredients in VFEND?

Active ingredient: voriconazole

Inactive ingredients:
- **VFEND IV:** sulfobutyl ether beta-cyclodextrin sodium
- **VFEND tablets:** croscarmellose sodium, lactose monohydrate, magnesium stearate, povidone, pregelatinized starch, and a coating containing hypromellose, lactose monohydrate, titanium dioxide, and triacetin
- **VFEND oral suspension:** anhydrous citric acid, colloidal silicon dioxide, natural orange flavor, sodium benzoate, sodium citrate dihydrate, sucrose, titanium dioxide, and xanthan gum

For more information, go to www.pfizer.com or call 1-800-438-1985

This product's label may have been updated. For current full prescribing information, please visit www.pfizer.com.

Distributed by Roerig Division of Pfizer Inc New York, NY 10017
PRINCIPAL DISPLAY PANEL - 200 mg Vial Carton

NDC 0049-3190-38
Rx only

1 Vial
Vfend® I.V.
(voriconazole) for injection

200 mg*
200 mg* of voriconazole

No Latex
No Preservatives

Sterile Single Use Vial
For I.V. Infusion Only

INTALERE CHOICE®
VFEND
voriconazole injection, powder, lyophilized, for solution

Product Information

<table>
<thead>
<tr>
<th>Product Type</th>
<th>HUMAN PRESCRIPTION DRUG</th>
<th>Item Code (Source)</th>
<th>NDC: 0049-3190</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route of Administration</td>
<td>INTRAVENOUS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Active Ingredient/Active Moiety

Store at controlled room temperature, 15° to 30°C (59° to 86°F).

DOSAGE AND USE:
Reconstitute with 10 mL of Water for Injection to give a clear solution containing 10 mg/mL Vfend and an extraneous volume of 23 mL. Must be further diluted before use. For administration, the required volume of the reconstituted solution is added to a recommended compatible infusion solution to provide a final Vfend solution containing 0.5-5 mg/mL. For appropriate diluents and storage recommendations, refer to prescribing information.

FOR INTRAVENOUS ADMINISTRATION

1 Vial Vfend® I.V. (voriconazole) for injection 200 mg*
200 mg* of voriconazole

Sterile Single Use Vial
For IV Infusion Only

MADE IN IRELAND
Distributed by
Roerig
Division of Pfizer Inc
NY, NY 10017
Ingredients

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Basis of Strength</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>VORICONAZOLE (UNII: JFU09I87TR) (VORICONAZOLE - UNII:JFU09I87TR)</td>
<td>VORICONAZOLE</td>
<td>10 mg in 1 mL</td>
</tr>
</tbody>
</table>

Inactive Ingredients

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETADEX SULFOBUTYL ETHER SODIUM (UNII: 2PP9364507)</td>
<td></td>
</tr>
</tbody>
</table>

Packaging

<table>
<thead>
<tr>
<th>#</th>
<th>Item Code</th>
<th>Package Description</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NDC:0049-3190-38</td>
<td>20 mL in 1 VIAL, SINGLE-USE; Type 0: Not a Combination Product</td>
<td>10/24/2012</td>
<td></td>
</tr>
</tbody>
</table>

Marketing Information

<table>
<thead>
<tr>
<th>Marketing Category</th>
<th>Application Number or Monograph Citation</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDA</td>
<td>NDA021267</td>
<td>10/24/2012</td>
<td></td>
</tr>
</tbody>
</table>

Labeler - Roerig (829076996)

Registrant - Pfizer Inc (113480771)

Establishment

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>ID/FEI</th>
<th>Business Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pfizer Ireland Pharmaceuticals</td>
<td>896090987</td>
<td>ANALYSIS(0049-3190), MANUFACTURE(0049-3190)</td>
<td></td>
</tr>
<tr>
<td>Pharmacia and Upjohn Company LLC</td>
<td>618054084</td>
<td>LABEL(0049-3190), MANUFACTURE(0049-3190), PACK(0049-3190)</td>
<td></td>
</tr>
</tbody>
</table>

Revised: 5/2019