CEFTRIAXONE- ceftriaxone injection, powder, for solution

Proficient Rx LP

Ceftriaxone for Injection USP, 250 mg, 500 mg, 1 g and 2 g

Rx Only

To reduce the development of drug-resistant bacteria and maintain the effectiveness of ceftriaxone sodium and other antibacterial drugs, ceftriaxone for injection should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

DESCRIPTION

Ceftriaxone for injection USP is a sterile, semisynthetic, broad-spectrum cephalosporin antibiotic for intravenous or intramuscular administration. Ceftriaxone sodium is \((6R,7R)-7-[2-(2-Amino-4-thiazolyl)glyoxylamido]-8-oxo-3-\[(1,2,5,6-tetrahydro-2-methyl-5,6-dioxo-as-triazin-3-yl)thio\]methyl\]-5-thia-1-azabicyclo [4.2.0]oct-2-ene-2-carboxylic acid, \(7^2-(Z)-(O\text{-methyloxime})\), disodium salt, sesquaterhydrate.

The chemical formula of ceftriaxone sodium is \(C_{18}H_{16}N_3NaO_S^3.5H_2O\). It has a calculated molecular weight of 661.59 and the following structural formula:

![Chemical structure of Ceftriaxone](image)

Ceftriaxone for injection USP is a white to yellowish-orange crystalline powder which is readily soluble in water, sparingly soluble in methanol and very slightly soluble in ethanol. The pH of a 1% aqueous solution is approximately 6.7. The color of ceftriaxone for injection solutions ranges from light yellow to amber, depending on the length of storage, concentration and diluent used.

Each vial contains ceftriaxone sodium equivalent to 250 mg, 500 mg, 1 gram or 2 grams of ceftriaxone activity. Ceftriaxone for injection USP contains approximately 83 mg (3.6 mEq) of sodium per gram of ceftriaxone activity.

CLINICAL PHARMACOLOGY

Average plasma concentrations of ceftriaxone following a single 30-minute intravenous (IV) infusion of a 0.5, 1 or 2 g dose and intramuscular (IM) administration of a single 0.5 (250 mg/mL or 350 mg/mL concentrations) or 1 g dose in healthy subjects are presented in Table 1.

<table>
<thead>
<tr>
<th>Dose/Route</th>
<th>Average Plasma Concentrations (mcg/mL)</th>
<th>0.5 hr</th>
<th>1 hr</th>
<th>2 hr</th>
<th>4 hr</th>
<th>6 hr</th>
<th>8 hr</th>
<th>12 hr</th>
<th>16 hr</th>
<th>24 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 g IV*</td>
<td></td>
<td>82</td>
<td>59</td>
<td>48</td>
<td>37</td>
<td>29</td>
<td>23</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>0.5 g IM</td>
<td></td>
<td>22</td>
<td>33</td>
<td>38</td>
<td>35</td>
<td>30</td>
<td>26</td>
<td>16</td>
<td>ND</td>
<td>5</td>
</tr>
<tr>
<td>250 mg/mL</td>
<td></td>
</tr>
<tr>
<td>0.5 g IM</td>
<td></td>
<td>20</td>
<td>32</td>
<td>38</td>
<td>34</td>
<td>31</td>
<td>26</td>
<td>16</td>
<td>ND</td>
<td>5</td>
</tr>
<tr>
<td>350 mg/mL</td>
<td></td>
</tr>
<tr>
<td>1 g IV*</td>
<td></td>
<td>151</td>
<td>111</td>
<td>88</td>
<td>67</td>
<td>53</td>
<td>43</td>
<td>28</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>1 g IM</td>
<td></td>
<td>151</td>
<td>111</td>
<td>88</td>
<td>67</td>
<td>53</td>
<td>43</td>
<td>28</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>2 g IV*</td>
<td></td>
<td>257</td>
<td>192</td>
<td>154</td>
<td>117</td>
<td>89</td>
<td>74</td>
<td>46</td>
<td>31</td>
<td>15</td>
</tr>
</tbody>
</table>

ND = Not determined.

*IV doses were infused at a constant rate over 30 minutes.

Ceftriaxone was completely absorbed following IM administration with mean maximum plasma concentrations occurring between 2 and 3 hours post-dose. Multiple IV or IM doses ranging from 0.5 to 2 g at 12- to 24-hour intervals resulted in 15% to 36% accumulation of ceftriaxone above single dose values.

Ceftriaxone concentrations in urine are shown in Table 2.

<table>
<thead>
<tr>
<th>Dose/Route</th>
<th>Average Urinary Concentrations (mcg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 g IV</td>
<td>526</td>
</tr>
<tr>
<td>2 to 4 hr</td>
<td>366</td>
</tr>
<tr>
<td>4 to 8 hr</td>
<td>142</td>
</tr>
<tr>
<td>8 to 12 hr</td>
<td>87</td>
</tr>
<tr>
<td>12 to 24 hr</td>
<td>70</td>
</tr>
<tr>
<td>24 to 48 hr</td>
<td>15</td>
</tr>
</tbody>
</table>
Thirty-three percent to 67% of a ceftriaxone dose was excreted in the urine as unchanged drug and the remainder was secreted in the bile and ultimately found in the feces as microbiologically inactive compounds. After a 1 g IV dose, average concentrations of ceftriaxone, determined from 1 to 3 hours after dosing, were 581 mcg/mL in the gallbladder bile, 788 mcg/mL in the common duct bile, 898 mcg/mL in the cystic duct bile, 78.2 mcg/g in the gallbladder wall and 62.1 mcg/mL in the concurrent plasma.

Over a 0.15 to 3 g dose range in healthy adult subjects, the values of elimination half-life ranged from 5.8 to 8.7 hours; apparent volume of distribution from 5.78 to 13.5 L; plasma clearance from 0.58 to 1.45 L/hour; and renal clearance from 0.32 to 0.73 L/hour. Ceftriaxone is reversibly bound to human plasma proteins, and the binding decreased from a value of 95% bound at plasma concentrations of <25 mcg/mL to a value of 85% bound at 300 mcg/mL. Ceftriaxone crosses the blood placenta barrier. The average values of maximum plasma concentration, elimination half-life, plasma clearance and volume of distribution after a 50 mg/kg IV dose and after a 75 mg/kg IV dose in pediatric patients suffering from bacterial meningitis are shown in Table 3. Ceftriaxone penetrated the inflamed meninges of infants and pediatric patients; CSF concentrations after a 50 mg/kg IV dose and after a 75 mg/kg IV dose are also shown in Table 3.

Table 3 Average Pharmacokinetic Parameters of Ceftriaxone in Pediatric Patients with Meningitis

<table>
<thead>
<tr>
<th></th>
<th>50 mg/kg IV</th>
<th>75 mg/kg IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Plasma Concentrations (mcg/mL)</td>
<td>216</td>
<td>275</td>
</tr>
<tr>
<td>Elimination Half-life (hr)</td>
<td>4.6</td>
<td>4.3</td>
</tr>
<tr>
<td>Plasma Clearance (mL/hr/kg)</td>
<td>49</td>
<td>60</td>
</tr>
<tr>
<td>Volume of Distribution (mL/kg)</td>
<td>338</td>
<td>373</td>
</tr>
<tr>
<td>CSF Concentration – inflamed meninges (mcg/mL)</td>
<td>5.6</td>
<td>6.4</td>
</tr>
<tr>
<td>Range (mcg/mL)</td>
<td>1.3 to 18.5</td>
<td>1.3 to 44</td>
</tr>
<tr>
<td>Time after dose (hr)</td>
<td>3.7 (± 1.6)</td>
<td>3.3 (± 1.4)</td>
</tr>
</tbody>
</table>

Compared to that in healthy adult subjects, the pharmacokinetics of ceftriaxone were only minimally altered in elderly subjects and in patients with renal impairment or hepatic dysfunction (Table 4); therefore, dosage adjustments are not necessary for these patients with ceftriaxone dosages up to 2 g per day. Ceftriaxone was not removed to any significant extent from the plasma by hemodialysis; in six of 26 dialysis patients, the elimination rate of ceftriaxone was markedly reduced.

Table 4 Average Pharmacokinetic Parameters of Ceftriaxone in Humans

<table>
<thead>
<tr>
<th>Subject Group</th>
<th>Elimination Half-Life (hr)</th>
<th>Plasma Clearance (L/hr)</th>
<th>Volume of Distribution (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy Subjects</td>
<td>5.8 to 8.7</td>
<td>0.58 to 1.45</td>
<td>5.8 to 13.5</td>
</tr>
<tr>
<td>Elderly Subjects (mean age, 70.5 yr)</td>
<td>8.9</td>
<td>0.83</td>
<td>10.7</td>
</tr>
<tr>
<td>Patients with Renal Impairment:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemodialysis Patients (0 to 5 mL/min)*</td>
<td>14.7</td>
<td>0.65</td>
<td>13.7</td>
</tr>
<tr>
<td>Severe (5 to 15 mL/min)</td>
<td>15.7</td>
<td>0.56</td>
<td>12.5</td>
</tr>
<tr>
<td>Moderate (16 to 30 mL/min)</td>
<td>11.4</td>
<td>0.72</td>
<td>11.8</td>
</tr>
<tr>
<td>Mild (31 to 60 mL/min)</td>
<td>12.4</td>
<td>0.70</td>
<td>13.3</td>
</tr>
<tr>
<td>Patients with Liver Disease</td>
<td>8.8</td>
<td>1.1</td>
<td>13.6</td>
</tr>
<tr>
<td>*Creatinine clearance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The elimination of ceftriaxone is not altered when ceftriaxone for injection is co-administered with probenecid.

Pharmacokinetics in the Middle Ear Fluid

In one study, total ceftriaxone concentrations (bound and unbound) were measured in middle ear fluid obtained during the insertion of tympanostomy tubes in 42 pediatric patients with otitis media. Sampling times were from 1 to 50 hours after a single intramuscular injection of 50 mg/kg of ceftriaxone. Mean (± SD) ceftriaxone levels in the middle ear reached a peak of 35 (± 12) mcg/mL at 24 hours, and remained at 19 (± 7) mcg/mL at 48 hours. Based on middle ear fluid ceftriaxone concentrations in the 23 to 25 hour and the 46 to 50 hour sampling time intervals, a half-life of 25 hours was calculated. Ceftriaxone is highly bound to plasma proteins. The extent of binding to proteins in the middle ear fluid is unknown.

Interaction with Calcium

The elimination of ceftriaxone is not altered when ceftriaxone for injection is co-administered with probenecid.
Two *in vitro* studies, one using adult plasma and the other neonatal plasma from umbilical cord blood have been carried out to assess interaction of ceftriaxone and calcium. Ceftriaxone concentrations up to 1 mM (in excess of concentrations achieved *in vivo* following administration of 2 grams ceftriaxone infused over 30 minutes) were used in combination with calcium concentrations up to 12 mM (48 mg/dL). Recovery of ceftriaxone from plasma was reduced with calcium concentrations of 6 mM (24 mg/dL) or higher in adult plasma or 4 mM (16 mg/dL) or higher in neonatal plasma. This may be reflective of ceftriaxone-calcium precipitation.

Microbiology

Mechanism of Action

Ceftriaxone is a bactericidal agent that acts by inhibition of bacterial cell wall synthesis. Ceftriaxone has activity in the presence of some beta-lactamases, both penicillinases and cephalosporinases, of Gram-negative and Gram-positive bacteria.

Mechanism of Resistance

Resistance to ceftriaxone is primarily through hydrolysis by beta-lactamase, alteration of penicillin-binding proteins (PBPs), and decreased permeability.

Interaction with Other Antimicrobials:

In an *in vitro* study antagonistic effects have been observed with the combination of chloramphenicol and ceftriaxone.

Ceftriaxone has been shown to be active against most isolates of the following bacteria, both *in vitro* and in clinical infections as described in the *INDICATIONS AND USAGE* section:

- **Gram-negative bacteria**
 - Acinetobacter calcoaceticus
 - Enterobacter aerogenes
 - Enterobacter cloacae
 - Escherichia coli
 - Haemophilus influenzae
 - Haemophilus parainfluenzae
 - Klebsiella oxytoca
 - Klebsiella pneumoniae
 - Moraxella catarrhalis
 - Morganella morganii
 - Neisseria gonorrhoeae
 - Neisseria meningitidis
 - Proteus mirabilis
 - Proteus vulgaris
 - Pseudomonas aeruginosa
 - Serratia marcescens

- **Gram-positive bacteria**
 - Staphylococcus aureus
 - Staphylococcus epidermidis
 - Streptococcus pneumoniae
 - Streptococcus pyogenes
 - Viridans group streptococci

- **Anaerobic bacteria**
 - Bacteroides fragilis
 - Clostridium species
 - Peptostreptococcus species

The following *in vitro* data are available, but their clinical significance is unknown. At least 90 percent of the following microorganisms exhibit an *in vitro* minimum inhibitory concentration (MIC) less than or equal to the susceptible breakpoint for ceftriaxone. However, the efficacy of ceftriaxone in treating clinical infections due to these microorganisms has not been established in adequate and well-controlled clinical trials.

- **Gram-negative bacteria**
 - Citrobacter diversus
 - Citrobacter freundii
Providencia species (including *Providencia rettgeri*)
Salmonella species (including *Salmonella typhi*)
Shigella species

- Gram-positive bacteria
 Streptococcus agalactiae
- Anaerobic bacteria
 Porphyromonas (Bacteroides) melaninogenicus
 Prevotella (Bacteroides) bivius

Susceptibility Tests

When available, the clinical microbiology laboratory should provide the results of *in vitro* susceptibility test results for antimicrobial drug products used in resident hospitals to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting an antibacterial drug product for treatment.

Dilution techniques:

Quantitative methods are used to determine antimicrobial minimal inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized test method. The MIC values should be interpreted according to criteria provided in Table 5.

Diffusion techniques:

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. The zone size provides an estimate of the susceptibility of bacteria to antimicrobial compounds. The zone size should be determined using a standardized test method. This procedure uses paper disks impregnated with 30 mcg ceftriaxone to test the susceptibility of microorganisms to ceftriaxone. The disk diffusion interpretive criteria are provided in Table 5.

Anaerobic techniques:

For anaerobic bacteria, the susceptibility to ceftriaxone as MICs can be determined by a standardized agar test method. The MIC values obtained should be interpreted according to the criteria provided in Table 5.

Table 5 Susceptibility Test Interpretive Criteria for Ceftriaxone

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Minimum Inhibitory Concentrations (mcg/mL)</th>
<th>Disk Diffusion Zone Diameters (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(S) Susceptible</td>
<td>(I) Intermediate</td>
</tr>
<tr>
<td></td>
<td>≤ 1</td>
<td>2</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td></td>
<td>≤2</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae</td>
<td></td>
<td>≤0.25</td>
</tr>
<tr>
<td>Neisseria meningitidis</td>
<td></td>
<td>≤0.12</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td></td>
<td>≤0.5</td>
</tr>
<tr>
<td>b meningitis isolates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td></td>
<td>≤1</td>
</tr>
<tr>
<td>b non-meningitis isolates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streptococcus species beta-hemolytic group</td>
<td></td>
<td>≤0.5</td>
</tr>
<tr>
<td>Viridans group streptococci</td>
<td></td>
<td>≤1</td>
</tr>
<tr>
<td>Anaerobic bacteria (agar method)</td>
<td></td>
<td>≤16</td>
</tr>
</tbody>
</table>

Susceptibility of staphylococci to ceftriaxone may be deduced from testing only penicillin and either cefoxitin or oxacillin.

The current absence of data on resistant isolates precludes defining any category other than ‘Susceptible’. If isolates yield MIC results other than susceptible, they should be submitted to a reference laboratory for additional testing.

*b Disc diffusion interpretive criteria for ceftriaxone discs against *Streptococcus pneumoniae* are not available, however, isolates of pneumococci with oxacillin zone diameters of ≥20 mm are susceptible (MIC ≤ 0.06 mcg/mL) to penicillin and can be considered susceptible to ceftriaxone. *Streptococcus pneumoniae* isolates should not be reported as penicillin (ceftriaxone) resistant or intermediate based solely on an oxacillin zone diameter of ≤19 mm. The ceftriaxone MIC should be determined for those isolates with oxacillin zone diameters ≤19 mm.

A report of Susceptible indicates that the antimicrobial is likely to inhibit growth of the pathogen if the antimicrobial compound reaches the concentration at the infection site necessary to inhibit growth of the pathogen. A report of Intermediate indicates that the result should be considered equivocal, and if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where a high dosage of drug can be used. This category
also provides a buffer zone that prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of Resistant indicates that the antimicrobial is not likely to inhibit growth of the pathogen if the antimicrobial compound reaches the concentrations usually achievable at the infection site; other therapy should be selected.

Quality Control:

Standardized susceptibility test procedures require the use of laboratory controls to monitor and ensure the accuracy and precision of supplies and reagents used in the assay, and the techniques of the individual performing the test. Standard ceftriaxone powder should provide the following range of MIC values noted in Table 6. For the diffusion technique using the 30 mcg disk, the criteria in Table 6 should be achieved.

<table>
<thead>
<tr>
<th>QC Strain</th>
<th>Minimum Inhibitory Concentrations (mcg/mL)</th>
<th>Disk Diffusion Zone diameters (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli ATCC 25922</td>
<td>0.03 to 0.12</td>
<td>29 to 35</td>
</tr>
<tr>
<td>Staphylococcus aureus ATCC 25923</td>
<td>1 to 8</td>
<td>22 to 28</td>
</tr>
<tr>
<td>Haemophilus influenzae ATCC 49247</td>
<td>0.06 to 0.25</td>
<td>31 to 39</td>
</tr>
<tr>
<td>Neisseria gonorrhoeae ATCC 49226</td>
<td>0.004 to 0.015</td>
<td>39 to 51</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa ATCC 27853</td>
<td>8 to 64</td>
<td>17 to 23</td>
</tr>
<tr>
<td>Streptococcus pneumoniae ATCC 49619</td>
<td>0.03 to 0.12</td>
<td>30 to 35</td>
</tr>
<tr>
<td>Bacteroides fragilis ATCC 25285 (agar method)</td>
<td>32 to 128</td>
<td>--</td>
</tr>
<tr>
<td>Bacteroides thetaiotaomicron ATCC 29741 (agar method)</td>
<td>64 to 256</td>
<td>--</td>
</tr>
</tbody>
</table>

INDICATIONS AND USAGE

Before instituting treatment with ceftriaxone, appropriate specimens should be obtained for isolation of the causative organism and for determination of its susceptibility to the drug. Therapy may be instituted prior to obtaining results of susceptibility testing.

To reduce the development of drug-resistant bacteria and maintain the effectiveness of ceftriaxone for injection USP and other antibacterial drugs, ceftriaxone for injection USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Ceftriaxone for injection USP is indicated for the treatment of the following infections when caused by susceptible organisms:

Lower Respiratory Tract Infections

causd by *Streptococcus pneumoniae*, *Staphylococcus aureus*, *Haemophilus influenzae*, *Haemophilus parainfluenzae*, *Klebsiella pneumoniae*, *Escherichia coli*, *Enterobacter aerogenes*, *Proteus mirabilis* or *Serratia marcescens*.

Acute Bacterial Otitis Media

causd by *Streptococcus pneumoniae*, *Haemophilus influenzae* (including beta-lactamase producing strains) or *Moraxella catarrhalis* (including beta-lactamase producing strains).

NOTE: In one study lower clinical cure rates were observed with a single dose of ceftriaxone for injection USP compared to 10 days of oral therapy. In a second study comparable cure rates were observed between single dose ceftriaxone for injection USP and the comparator. The potentially lower clinical cure rate of ceftriaxone for injection USP should be balanced against the potential advantages of parenteral therapy (see CLINICAL STUDIES).

Skin and Skin Structure Infections

Urinary Tract Infections (complicated and uncomplicated)

causd by *Escherichia coli*, *Proteus mirabilis*, *Proteus vulgaris*, *Morganella morganii* or *Klebsiella pneumoniae*.

Uncomplicated Gonorrhea (cervical/urethral and rectal)

causd by *Neisseria gonorrhoeae*, including both penicillinase- and nonpenicillinase-producing strains, and pharyngeal gonorrhea caused by nonpenicillinase-producing strains of *Neisseria gonorrhoeae*.

Pelvic Inflammatory Disease

causd by *Neisseria gonorrhoeae*. Ceftriaxone sodium, like other cephalosporins, has no activity against *Chlamydia trachomatis*. Therefore, when cephalosporins are used in the treatment of patients with pelvic inflammatory disease and *Chlamydia trachomatis* is one of the suspected pathogens, appropriate
antichlamydial coverage should be added.

Bacterial Septicemia

caused by *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Escherichia coli*, *Haemophilus influenzae* or *Klebsiella pneumoniae*.

Bone and Joint Infections

caused by *Staphylococcus aureus*, *Streptococcus pneumoniae*, *Escherichia coli*, *Proteus mirabilis*, *Klebsiella pneumoniae* or *Enterobacter* species.

Intra-Abdominal Infections

caused by *Escherichia coli*, *Klebsiella pneumoniae*, *Bacteroides fragilis*, *Clostridium* species (Note: most strains of *Clostridium difficile* are resistant) or *Peptostreptococcus* species.

Meningitis

caused by *Haemophilus influenzae*, *Neisseria meningitidis* or *Streptococcus pneumoniae*. Ceftriaxone for injection USP has also been used successfully in a limited number of cases of meningitis and shunt infection caused by *Staphylococcus epidermidis* and *Escherichia coli*.

Surgical Prophylaxis

The preoperative administration of a single 1 g dose of ceftriaxone for injection USP may reduce the incidence of postoperative infections in patients undergoing surgical procedures classified as contaminated or potentially contaminated (e.g., vaginal or abdominal hysterectomy or cholecystectomy for chronic calculous cholecystitis in high-risk patients, such as those over 70 years of age, with acute cholecystitis not requiring therapeutic antimicrobials, obstructive jaundice or common duct bile stones) and in surgical patients for whom infection at the operative site would present serious risk (e.g., during coronary artery bypass surgery). Although ceftriaxone for injection USP has been shown to have been as effective as cefazolin in the prevention of infection following coronary artery bypass surgery, no placebo-controlled trials have been conducted to evaluate any cephalosporin antibiotic in the prevention of infection following coronary artery bypass surgery. When administered prior to surgical procedures for which it is indicated, a single 1 g dose of ceftriaxone for injection USP provides protection from most infections due to susceptible organisms throughout the course of the procedure.

*Efficacy for this organism in this organ system was studied in fewer than ten infections.

CONTRAINDICATIONS

Ceftriaxone for injection is contraindicated in patients with known allergy to the cephalosporin class of antibiotics.

Neonates (≤28 days)

Hyperbilirubinemic neonates, especially prematures, should not be treated with ceftriaxone for injection. *In vitro* studies have shown that ceftriaxone can displace bilirubin from its binding to serum albumin, leading to a possible risk of bilirubin encephalopathy in these patients.

Ceftriaxone for injection is contraindicated in neonates if they require (or are expected to require) treatment with calcium-containing IV solutions, including continuous calcium-containing infusions such as parenteral nutrition because of the risk of precipitation of ceftriaxone-calcium (see **CLINICAL PHARMACOLOGY**, **WARNINGS** and **DOSAGE AND ADMINISTRATION**).

A small number of cases of fatal outcomes in which a crystalline material was observed in the lungs and kidneys at autopsy have been reported in neonates receiving ceftriaxone for injection and calcium-containing fluids. In some of these cases, the same intravenous infusion line was used for both ceftriaxone for injection and calcium-containing fluids and in some a precipitate was observed in the intravenous infusion line. At least one fatality has been reported in a neonate in whom ceftriaxone for injection and calcium-containing fluids were administered at different time points via different intravenous lines; no crystalline material was observed at autopsy in this neonate. There have been no similar reports in patients other than neonates.

WARNINGS

Hypersensitivity

BEFORE THERAPY WITH CEFTRIAXONE IS INSTITUTED, CAREFUL INQUIRY SHOULD BE MADE TO DETERMINE WHETHER THE PATIENT HAS HAD PREVIOUS HYPERSENSITIVITY REACTIONS TO CEPHALOSPORINS, PENICILLINS OR OTHER DRUGS. THIS PRODUCT SHOULD BE GIVEN CAUTIOUSLY TO PENICILLIN-SENSITIVE PATIENTS. ANTIBIOTICS SHOULD BE ADMINISTERED WITH CAUTION TO ANY PATIENT WHO HAS DEMONSTRATED SOME FORM OF ALLERGY, PARTICULARLY TO DRUGS. SERIOUS ACUTE HYPERSENSITIVITY REACTIONS MAY REQUIRE THE USE OF SUBCUTANEOUS EPINEPHRINE AND OTHER EMERGENCY MEASURES.

As with other cephalosporins, anaphylactic reactions with fatal outcome have been reported, even if a patient is not known to be allergic or previously exposed.

Interaction with Calcium-Containing Products
Do not use diluents containing calcium, such as Ringer's solution or Hartmann's solution, to reconstitute ceftriaxone for injection vials or to further dilute a reconstituted vial for IV administration because a precipitate can form. Precipitation of ceftriaxone-calcium can also occur when ceftriaxone for injection is mixed with calcium-containing solutions in the same IV administration line. Ceftriaxone for Injection must not be administered simultaneously with calcium-containing IV solutions, including continuous calcium-containing infusions such as parenteral nutrition via a Y-site. However, in patients other than neonates, ceftriaxone for injection and calcium-containing solutions may be administered sequentially of one another if the infusion lines are thoroughly flushed between infusions with a compatible fluid. *In vitro* studies using adult and neonatal plasma from umbilical cord blood demonstrated that neonates have an increased risk of precipitation of ceftriaxone-calcium (see CLINICAL PHARMACOLOGY, CONTRAINDICATIONS and DOSAGE AND ADMINISTRATION).

Clostridium difficile

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including ceftriaxone for injection, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of *C. difficile*.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of *C. difficile* cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against *C. difficile* may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic treatment of *C. difficile*, and surgical evaluation should be instituted as clinically indicated.

Hemolytic Anemia

An immune mediated hemolytic anemia has been observed in patients receiving cephalosporin class antibacterials including Ceftriaxone for Injection. Severe cases of hemolytic anemia, including fatalities, have been reported during treatment in both adults and children. If a patient develops anemia while on ceftriaxone, the diagnosis of a cephalosporin associated anemia should be considered and ceftriaxone stopped until the etiology is determined.

PRECAUTIONS

General

Prescribing ceftriaxone for injection in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

Although transient elevations of BUN and serum creatinine have been observed, at the recommended dosages, the nephrotoxic potential of ceftriaxone for injection is similar to that of other cephalosporins.

Ceftriaxone is excreted via both biliary and renal excretion (see CLINICAL PHARMACOLOGY). Therefore, patients with renal failure normally require no adjustment in dosage when usual doses of ceftriaxone for injection are administered.

Dosage adjustments should not be necessary in patients with hepatic dysfunction; however, in patients with both hepatic dysfunction and significant renal disease, caution should be exercised and the ceftriaxone for injection dosage should not exceed 2 gm daily.

Alterations in prothrombin times have occurred rarely in patients treated with ceftriaxone for injection. Patients with impaired vitamin K synthesis or low vitamin K stores (e.g., chronic hepatic disease and malnutrition) may require monitoring of prothrombin time during ceftriaxone for injection treatment. Vitamin K administration (10 mg weekly) may be necessary if the prothrombin time is prolonged before or during therapy.

Prolonged use of ceftriaxone for injection may result in overgrowth of nonsusceptible organisms. Careful observation of the patient is essential. If superinfection occurs during therapy, appropriate measures should be taken.

Ceftriaxone for injection should be prescribed with caution in individuals with a history of gastrointestinal disease, especially colitis.

There have been reports of sonographic abnormalities in the gallbladder of patients treated with ceftriaxone for injection; some of these patients also had symptoms of gallbladder disease. These abnormalities appear on sonography as an echo without acoustical shadowing suggesting sludge or as an echo with acoustical shadowing which may be misinterpreted as gallstones. The chemical nature of the sonographically detected material has been determined to be predominantly a ceftriaxone-calcium salt. The condition appears to be transient and reversible upon discontinuation of ceftriaxone for injection and institution of conservative management. Therefore, ceftriaxone for injection should be discontinued in patients who develop signs and symptoms suggestive of gallbladder disease and/or the sonographic findings described above.
Cases of pancreatitis, possibly secondary to biliary obstruction, have been reported rarely in patients treated with ceftriaxone for injection. Most patients presented with risk factors for biliary stasis and biliary sludge (preceding major therapy, severe illness, total parenteral nutrition). A cofactor role of ceftriaxone for injection-related biliary precipitation cannot be ruled out.

Information for Patients

Patients should be counseled that antibacterial drugs including ceftriaxone for injection should only be used to treat bacterial infections. They do not treat viral infections (e.g., common cold). When ceftriaxone for injection is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by ceftriaxone for injection or other antibacterial drugs in the future.

Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Carcinogenesis

Considering the maximum duration of treatment and the class of the compound, carcinogenicity studies with ceftriaxone in animals have not been performed. The maximum duration of animal toxicity studies was 6 months.

Mutagenesis

Genetic toxicology tests included the Ames test, a micronucleus test and a test for chromosomal aberrations in human lymphocytes cultured in vitro with ceftriaxone. Ceftriaxone showed no potential for mutagenic activity in these studies.

Impairment of Fertility

Ceftriaxone produced no impairment of fertility when given intravenously to rats at daily doses up to 586 mg/kg/day, approximately 20 times the recommended clinical dose of 2 g/day.

Pregnancy

Teratogenic Effects

Teratogenic Effects

Pregnancy Category B:

Reproductive studies have been performed in mice and rats at doses up to 20 times the usual human dose and have no evidence of embryotoxicity, fetotoxicity or teratogenicity. In primates, no embryotoxicity or teratogenicity was demonstrated at a dose approximately 3 times the human dose.

There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproductive studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

Nonteratogenic Effects

In rats, in the Segment I (fertility and general reproduction) and Segment III (perinatal and postnatal) studies with intravenously administered ceftriaxone, no adverse effects were noted on various reproductive parameters during gestation and lactation, including postnatal growth, functional behavior and reproductive ability of the offspring, at doses of 586 mg/kg/day or less.

Nursing Mothers

Low concentrations of ceftriaxone are excreted in human milk. Caution should be exercised when ceftriaxone for injection is administered to a nursing woman.

Pediatric Use

Safety and effectiveness of ceftriaxone for injection in neonates, infants and pediatric patients have been established for the dosages described in the DOSAGE AND ADMINISTRATION section. In vitro studies have shown that ceftriaxone, like some other cephalosporins, can displace bilirubin from serum albumin. Ceftriaxone for injection should not be administered to hyperbilirubinemic neonates, especially prematures (see CONTRAINDICATIONS).

Geriatric Use

Of the total number of subjects in clinical studies of Ceftriaxone for injection, 32% were 60 and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. The pharmacokinetics of ceftriaxone were only minimally altered in geriatric patients compared to
healthy adult subjects and dosage adjustments are not necessary for geriatric patients with ceftriaxone dosages up to 2 g per day (see CLINICAL PHARMACOLOGY).

ADVERSE REACTIONS
Ceftriaxone for injection is generally well tolerated. In clinical trials, the following adverse reactions, which were considered to be related to ceftriaxone for injection therapy or of uncertain etiology, were observed:

Local Reactions
Pain, induration and tenderness was 1% overall. Phlebitis was reported in <1% after IV administration. The incidence of warmth, tightness or induration was 17% (3/17) after IM administration of 350 mg/mL and 5% (1/20) after IM administration of 250 mg/mL.

Hypersensitivity
Rash (1.7%). Less frequently reported (<1%) were pruritus, fever or chills.

Hematologic
Eosinophilia (6%), thrombocytosis (5.1%) and leukopenia (2.1%). Less frequently reported (<1%) were anemia, hemolytic anemia, neutropenia, lymphopenia, thrombocytopenia and prolongation of the prothrombin time.

Gastrointestinal
Diarrhea (2.7%). Less frequently reported (<1%) were nausea or vomiting, and dysgeusia. The onset of pseudomembranous colitis symptoms may occur during or after antibacterial treatment (see WARNINGS).

Hepatic
Elevations of SGOT (3.1%) or SGPT (3.3%). Less frequently reported (<1%) were elevations of alkaline phosphatase and bilirubin.

Renal
Elevations of the BUN (1.2%). Less frequently reported (<1%) were elevations of creatinine and the presence of casts in the urine.

Central Nervous System
Headache or dizziness were reported occasionally (<1%).

Genitourinary
Moniliasis or vaginitis were reported occasionally (<1%).

Miscellaneous
Diaphoresis and flushing were reported occasionally (<1%).
Other rarely observed adverse reactions (<0.1%) include abdominal pain, agranulocytosis, allergic pneumonitis, anaphylaxis, basophilia, biliary lithiasis, bronchospasm, colitis, dyspepsia, epistaxis, flatulence, gallbladder sludge, glycosuria, hematuria, jaundice, leukocytosis, lymphocytosis, monocytosis, nephrolithiasis, palpitations, a decrease in the prothrombin time, renal precipitations, seizures, and serum sickness.

Postmarketing Experience
In addition to the adverse reactions reported during clinical trials, the following adverse experiences have been reported during clinical practice in patients treated with ceftriaxone for injection. Data are generally insufficient to allow an estimate of incidence or to establish causation.
A small number of cases of fatal outcomes in which a crystalline material was observed in the lungs and kidneys at autopsy have been reported in neonates receiving ceftriaxone for injection and calcium-containing fluids. In some of these cases, the same intravenous infusion line was used for both ceftriaxone for injection and calcium-containing fluids and in some a precipitate was observed in the intravenous infusion line. At least one fatality has been reported in a neonate in whom ceftriaxone for injection and calcium-containing fluids were administered at different time points via different intravenous lines; no crystalline material was observed at autopsy in this neonate. There have been no similar reports in patients other than neonates.

Gastrointestinal
Stomatitis and glossitis.

Genitourinary
Oliguria.

Dermatologic
Exanthema, allergic dermatitis, urticaria, edema. As with many medications, isolated cases of severe cutaneous adverse reactions (erythema multiforme, Stevens-Johnson syndrome or Lyell’s syndrome/toxic epidermal necrolysis) have been reported.

Cephalosporin Class Adverse Reactions

In addition to the adverse reactions listed above which have been observed in patients treated with ceftriaxone, the following adverse reactions and altered laboratory test results have been reported for cephalosporin class antibiotics:

Adverse Reactions
Allergic reactions, drug fever, serum sickness-like reaction, renal dysfunction, toxic nephropathy, reversible hyperactivity, hyperthermia, hepatic dysfunction including cholestasis, aplastic anemia, hemorrhage, and superinfection.

Altered Laboratory Tests
Positive direct Coombs’ test, false-positive test for urinary glucose, and elevated LDH.

Several cephalosporins have been implicated in triggering seizures, particularly in patients with renal impairment when the dosage was not reduced (see DOSAGE AND ADMINISTRATION). If seizures associated with drug therapy occur, the drug should be discontinued. Anticonvulsant therapy can be given if clinically indicated.

OVERDOSAGE
In the case of overdosage, drug concentration would not be reduced by hemodialysis or peritoneal dialysis. There is no specific antidote. Treatment of overdosage should be symptomatic.

DOSAGE AND ADMINISTRATION

Ceftriaxone for injection may be administered intravenously or intramuscularly.

Do not use diluents containing calcium, such as Ringer’s solution or Hartmann’s solution, to reconstitute ceftriaxone for injection vials or to further dilute a reconstituted vial for IV administration because a precipitate can form. Precipitation of ceftriaxone-calcium can also occur when ceftriaxone for injection is mixed with calcium-containing solutions in the same IV administration line. Ceftriaxone for injection must not be administered simultaneously with calcium-containing IV solutions, including continuous calcium-containing infusions such as parenteral nutrition via a Y-site. However, in patients other than neonates, ceftriaxone for injection and calcium-containing solutions may be administered sequentially of one another if the infusion lines are thoroughly flushed between infusions with a compatible fluid (see WARNINGS).

There have been no reports of an interaction between ceftriaxone and oral calcium-containing products or interaction between intramuscular ceftriaxone and calcium-containing products (IV or oral).

Neonates

Hyperbilirubinemic neonates, especially premature, should not be treated with ceftriaxone for injection (see CONTRAINDICATIONS).

Ceftriaxone for injection is contraindicated in neonates if they require (or are expected to require) treatment with calcium-containing IV solutions, including continuous calcium-containing infusions such as parenteral nutrition because of the risk of precipitation of ceftriaxone-calcium (see CONTRAINDICATIONS).

Pediatric Patients

For the treatment of skin and skin structure infections, the recommended total daily dose is 50 to 75 mg/kg given once a day (or in equally divided doses twice a day). The total daily dose should not exceed 2 grams.

For the treatment of acute bacterial otitis media, a single intramuscular dose of 50 mg/kg (not to exceed 1 gram) is recommended (see INDICATIONS AND USAGE).

For the treatment of serious miscellaneous infections other than meningitis, the recommended total daily dose is 50 to 75 mg/kg, given in divided doses every 12 hours. The total daily dose should not exceed 2 grams.

In the treatment of meningitis, it is recommended that the initial therapeutic dose be 100 mg/kg (not to exceed 4 grams). Thereafter, a total daily dose of 100 mg/kg/day (not to exceed 4 grams daily) is recommended. The daily dose may be administered once a day (or in equally divided doses every 12 hours). The usual duration of therapy is 7 to 14 days.

Adults

The usual adult daily dose is 1 to 2 grams given once a day (or in equally divided doses twice a day) depending on the type and severity of infection. For infections caused by Staphylococcus aureus (MSSA), the recommended daily dose is 2 to 4 grams, in order to achieve > 90% target attainment. The total daily dose should not exceed 4 grams.
If *Chlamydia trachomatis* is a suspected pathogen, appropriate antichlamydial coverage should be added, because ceftriaxone sodium has no activity against this organism.

For the treatment of uncomplicated gonococcal infections, a single intramuscular dose of 250 mg is recommended.

For preoperative use (surgical prophylaxis), a single dose of 1 gram administered intravenously 1/2 to 2 hours before surgery is recommended.

Generally, ceftriaxone for injection therapy should be continued for at least 2 days after the signs and symptoms of infection have disappeared. The usual duration of therapy is 4 to 14 days; in complicated infections, longer therapy may be required.

When treating infections caused by *Streptococcus pyogenes*, therapy should be continued for at least 10 days.

No dosage adjustment is necessary for patients with impairment of renal or hepatic function.

Directions For Use

Intramuscular Administration:
Reconstitute ceftriaxone for injection powder with the appropriate diluent (see DOSAGE AND ADMINISTRATION: Compatibility and Stability).

Inject diluent into vial, shake vial thoroughly to form solution. Withdraw entire contents of vial into syringe to equal total labeled dose.

After reconstitution, each 1 mL of solution contains approximately 250 mg or 350 mg equivalent of ceftriaxone according to the amount of diluent indicated below. If required, more dilute solutions could be utilized. A 350 mg/mL concentration is not recommended for the 250 mg vial since it may not be possible to withdraw the entire contents.

As with all intramuscular preparations, ceftriaxone for injection should be injected well within the body of a relatively large muscle; aspiration helps to avoid unintentional injection into a blood vessel.

<table>
<thead>
<tr>
<th>Vial Dosage Size</th>
<th>Amount of Diluent to be Added</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>250 mg/mL</td>
</tr>
<tr>
<td>250 mg</td>
<td>0.9 mL</td>
</tr>
<tr>
<td>500 mg</td>
<td>1.8 mL</td>
</tr>
<tr>
<td>1 g</td>
<td>3.6 mL</td>
</tr>
<tr>
<td>2 g</td>
<td>7.2 mL</td>
</tr>
</tbody>
</table>

Intravenous Administration:
Ceftriaxone for injection should be administered intravenously by infusion over a period of 30 minutes. Concentrations between 10 mg/mL and 40 mg/mL are recommended; however, lower concentrations may be used if desired. Reconstitute vials with an appropriate IV diluent (see DOSAGE AND ADMINISTRATION: Compatibility and Stability).

<table>
<thead>
<tr>
<th>Vial Dosage Size</th>
<th>Amount of Diluent to be Added</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 mg</td>
<td>2.4 mL</td>
</tr>
<tr>
<td>500 mg</td>
<td>4.8 mL</td>
</tr>
<tr>
<td>1 g</td>
<td>9.6 mL</td>
</tr>
<tr>
<td>2 g</td>
<td>19.2 mL</td>
</tr>
</tbody>
</table>

After reconstitution, each 1 mL of solution contains approximately 100 mg equivalent of ceftriaxone. Withdraw entire contents and dilute to the desired concentration with the appropriate IV diluent.

Compatibility and Stability
Ceftriaxone has been shown to be compatible with Flagyl®* IV (metronidazole hydrochloride). The concentration should not exceed 5 to 7.5 mg/mL metronidazole hydrochloride with ceftriaxone 10 mg/mL as an admixture. The admixture is stable for 24 hours at room temperature only in 0.9% sodium chloride injection or 5% dextrose in water (D5W). No compatibility studies have been conducted with the Flagyl®* IV RTU® (metronidazole) formulation or using other diluents. Metronidazole at concentrations greater than 8 mg/mL will precipitate. Do not refrigerate the admixture as precipitation will occur.

Vancomycin, ampicillin, aminoglycosides, and fluconazole are physically incompatible with ceftriaxone in admixtures. When any of these drugs are to be administered concomitantly with ceftriaxone by intermittent intravenous infusion, it is recommended that they be given sequentially, with thorough flushing of the intravenous lines (with one of the compatible fluids) between the administrations.

Do not use diluents containing calcium, such as Ringer’s solution or Hartmann’s solution, to reconstitute ceftriaxone for injection vials or to further dilute a reconstituted vial for IV administration. Particulate formation can result.

Ceftriaxone for injection solutions should not be physically mixed with or piggybacked into solutions containing other antimicrobial drugs or into diluent solutions other than those listed above, due to
possible incompatibility (see WARNINGS).

Ceftriaxone for injection sterile powder should be stored at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature] and protected from light. After reconstitution, protection from normal light is not necessary. The color of solutions ranges from light yellow to amber, depending on the length of storage, concentration and diluent used.

Ceftriaxone for injection intramuscular solutions remain stable (loss of potency less than 10%) for the following time periods:

<table>
<thead>
<tr>
<th>Diluent</th>
<th>Concentration mg/mL</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Room Temp. (25°C)</td>
<td>Refrigerated (4°C)</td>
</tr>
<tr>
<td>Sterile Water for Injection</td>
<td>100</td>
<td>2 days</td>
</tr>
<tr>
<td></td>
<td>250, 350</td>
<td>24 hours</td>
</tr>
<tr>
<td>0.9% Sodium Chloride Solution</td>
<td>100</td>
<td>2 days</td>
</tr>
<tr>
<td></td>
<td>250, 350</td>
<td>24 hours</td>
</tr>
<tr>
<td>5% Dextrose Solution</td>
<td>100</td>
<td>2 days</td>
</tr>
<tr>
<td></td>
<td>250, 350</td>
<td>24 hours</td>
</tr>
<tr>
<td>Bacteriostatic Water + 0.9% Benzyl Alcohol</td>
<td>100</td>
<td>24 hours</td>
</tr>
<tr>
<td></td>
<td>250, 350</td>
<td>24 hours</td>
</tr>
<tr>
<td>1% Lidocaine Solution (without epinephrine)</td>
<td>100</td>
<td>24 hours</td>
</tr>
<tr>
<td></td>
<td>250, 350</td>
<td></td>
</tr>
</tbody>
</table>

Ceftriaxone for injection intravenous solutions remain stable (loss of potency less than 10%) for the following time periods stored in glass or PVC containers:

<table>
<thead>
<tr>
<th>Diluent</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Room Temp. (25°C)</td>
</tr>
<tr>
<td>Sterile Water</td>
<td>2 days</td>
</tr>
<tr>
<td>0.9% Sodium Chloride Solution</td>
<td>2 days</td>
</tr>
<tr>
<td>10% Dextrose Solution</td>
<td>2 days</td>
</tr>
<tr>
<td>5% Dextrose + 0.9% Sodium Chloride Solution*</td>
<td>2 days</td>
</tr>
<tr>
<td>5% Dextrose + 0.45% Sodium Chloride Solution*</td>
<td>2 days</td>
</tr>
</tbody>
</table>

*Data available for 10 to 40 mg/mL concentrations in this diluent in PVC containers only.

The following intravenous ceftriaxone for injection solutions are stable at room temperature (25°C) for 24 hours, at concentrations between 10 mg/mL and 40 mg/mL: Sodium Lactate (PVC container), 10% Invert Sugar (glass container), 5% Sodium Bicarbonate (glass container), Freamine III (glass container), Normosol-M in 5% Dextrose (glass and PVC containers), Ionosol-B in 5% Dextrose (glass container), 5% Mannitol (glass container), 10% Mannitol (glass container).

After the indicated stability time periods, unused portions of solutions should be discarded.

NOTE: Parenteral drug products should be inspected visually for particulate matter before administration.

Ceftriaxone for injection reconstituted with 5% Dextrose or 0.9% Sodium Chloride solution at concentrations between 10 mg/mL and 40 mg/mL, and then stored in frozen state (-20°C) in PVC or polyolefin containers, remains stable for 26 weeks.

Frozen solutions of ceftriaxone for injection should be thawed at room temperature before use. After thawing, unused portions should be discarded. DO NOT REFREEZE.

ANIMAL PHARMACOLOGY
Concretions consisting of the precipitated calcium salt of ceftriaxone have been found in the gallbladder bile of dogs and baboons treated with ceftriaxone.

These appeared as a gritty sediment in dogs that received 100 mg/kg/day for 4 weeks. A similar phenomenon has been observed in baboons but only after a protracted dosing period (6 months) at higher dose levels (350 mg/kg/day or more). The likelihood of this occurrence in humans is considered to be low, since ceftriaxone has a greater plasma half-life in humans, the calcium salt of ceftriaxone is more soluble in human gallbladder bile and the calcium content of human gallbladder bile is relatively low.

HOW SUPPLIED
Ceftriaxone for injection USP is supplied as a sterile crystalline powder in glass vials. The following packages are available:

Vials containing 1 g equivalent of ceftriaxone. Box of 1 (NDC 63187-435-01)

NOTE: Ceftriaxone for injection USP sterile powder should be stored at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature] and protected from light.
Clinical Trials in Pediatric Patients With Acute Bacterial Otitis Media

In two adequate and well controlled U.S. clinical trials a single IM dose of ceftriaxone was compared with a 10 day course of oral antibiotic in pediatric patients between the ages of 3 months and 6 years. The clinical cure rates and statistical outcome appear in the table below:

<table>
<thead>
<tr>
<th>Study Day</th>
<th>Ceftriaxone Single Dose</th>
<th>Comparator – 10 days of Oral Therapy</th>
<th>95% Confidence Interval</th>
<th>Statistical Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1 - U.S.</td>
<td>14 74% (220/296)</td>
<td>82% (247/302)</td>
<td>(-14.4%, -0.5%)</td>
<td>Ceftriaxone is lower than control at study day 14 and 28.</td>
</tr>
<tr>
<td>Study 2 - U.S.5</td>
<td>14 54% (113/210)</td>
<td>60% (124/206)</td>
<td>(-16.4%, 3.6%)</td>
<td>Ceftriaxone is equivalent to control at study day 14 and 28.</td>
</tr>
</tbody>
</table>

An open-label bacteriologic study of ceftriaxone without a comparator enrolled 108 pediatric patients, 79 of whom had positive baseline cultures for one or more of the common pathogens. The results of this study are tabulated as follows:

Week 2 and 4 Bacteriologic Eradication Rates in the Per Protocol Analysis in the Roche Bacteriologic Study by pathogen

<table>
<thead>
<tr>
<th>Organism</th>
<th>Study Day 13-to 15</th>
<th>Study Day 30+2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Analyzed</td>
<td>No. Erad. (%)</td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>38</td>
<td>32 (84)</td>
</tr>
<tr>
<td>Haemophilus influenzae</td>
<td>33</td>
<td>28 (85)</td>
</tr>
<tr>
<td>Moraxella catarrhalis</td>
<td>15</td>
<td>12 (80)</td>
</tr>
</tbody>
</table>

REFERENCES

Flagyl® is a registered trademark of G.D.Searle & Co.

Manufactured for:

Lupin Pharmaceuticals, Inc.

111 South Calvert Street
Baltimore, Maryland 21202

United States

Manufactured by:

Lupin Limited

Mandideep 462 046

INDIA

Relabeled By:
Product Information

Product Type: HUMAN PRESCRIPTION DRUG

Route of Administration: INTRAMUSCULAR, INTRAVENOUS

Active Ingredient/Active Moiety

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Basis of Strength</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEFTRIAXONE SODIUM</td>
<td>CEFTRIAXONE</td>
<td>1 g</td>
</tr>
</tbody>
</table>

Product Characteristics

- Color: WHITE (white to yellowish orange)
- Shape: Score
- Flavor: Size
- Imprint Code: Contains

Packaging

<table>
<thead>
<tr>
<th># Item Code</th>
<th>Package Description</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NDC:63187-435-01</td>
<td>1 in 1 BOX; Type 0; Not a Combination Product</td>
<td>02/02/2015</td>
<td></td>
</tr>
</tbody>
</table>

Marketing Information

- Marketing Category: ANDA
- Application Number or Monograph Citation: ANDA065125
- Marketing Start Date: 06/01/2009
- Marketing End Date:

Labeler: Proficient Rx LP (079196022)
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>ID/FEI</th>
<th>Business Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proficient Rx LP</td>
<td></td>
<td>078186022</td>
<td>REPACK(63187-435), RELABEL(63187-435)</td>
</tr>
</tbody>
</table>

Revised: 11/2019 Proficient Rx LP