Tramadol Hydrochloride and Acetaminophen Tablets CIV

BOXED WARNING

HEPATOTOXICITY

Tramadol hydrochloride and acetaminophen tablets contains acetaminophen and tramadol HCl. Acetaminophen has been associated with cases of acute liver failure, at times resulting in liver transplant and death. Most of the cases of liver injury are associated with the use of acetaminophen at doses that exceed 4,000 milligrams per day, and often involve more than one acetaminophen-containing product (see WARNINGS).

DESCRIPTION

Tramadol hydrochloride and acetaminophen tablets combines two analgesics, tramadol 37.5 mg and acetaminophen 325 mg.

The chemical name for tramadol hydrochloride is (±)cis-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol hydrochloride. Its structural formula is:

The molecular weight of tramadol hydrochloride is 299.84. Tramadol hydrochloride is a white, bitter, crystalline and odorless powder.
The chemical name for acetaminophen is \(N\)-acetyl-\(p\)-aminophenol. Its structural formula is:

\[
\text{OH} \\
\text{NH-C-CH}_3 \\
\text{O}
\]

The molecular weight of acetaminophen is 151.16. Acetaminophen is an analgesic and antipyretic agent which occurs as a white, odorless, crystalline powder, possessing a slightly bitter taste.

Tramadol hydrochloride and acetaminophen tablets for oral administration contain 37.5 mg tramadol hydrochloride and 325 mg acetaminophen and are light yellow in color. Inactive ingredients in the tablet are crospovidone, hypromellose, iron oxide yellow, magnesium stearate, microcrystalline cellulose, pregelatinized starch, polyethylene glycol, sodium starch glycolate, and titanium dioxide.

CLINICAL PHARMACOLOGY

The following information is based on studies of tramadol alone or acetaminophen alone, except where otherwise noted:

Pharmacodynamics

Tramadol hydrochloride and acetaminophen tablets contain tramadol and acetaminophen. Tramadol is a centrally acting synthetic opioid analgesic. Although its mode of action is not completely understood, from animal tests, at least two complementary mechanisms appear applicable: binding of parent and M1 metabolite to \(\mu\)-opioid receptors and weak inhibition of reuptake of norepinephrine and serotonin.

Opioid activity is due to both low affinity binding of the parent compound and higher affinity binding of the O-demethylated metabolite M1 to \(\mu\)-opioid receptors. In animal models, M1 is up to 6 times more potent than tramadol in producing analgesia and 200 times more potent in \(\mu\)-opioid binding. Tramadol-induced analgesia is only partially antagonized by the opiate antagonist naloxone in several animal tests. The relative contribution of both tramadol and M1 to human analgesia is dependent upon the plasma concentrations of each compound (see **CLINICAL PHARMACOLOGY, Pharmacokinetics**).

Tramadol has been shown to inhibit reuptake of norepinephrine and serotonin \textit{in vitro}, as have some
other opioid analgesics. These mechanisms may contribute independently to the overall analgesic profile of tramadol. Apart from analgesia, tramadol administration may produce a constellation of symptoms (including dizziness, somnolence, nausea, constipation, sweating and pruritus) similar to that of other opioids.

Acetaminophen is a non-opiate, non-salicylate analgesic.

Pharmacokinetics

Tramadol is administered as a racemate and both the [-] and [+] forms of both tramadol and M1 are detected in the circulation. The pharmacokinetics of plasma tramadol and acetaminophen following oral administration of one tramadol hydrochloride and acetaminophen tablets are shown in Table 1. Tramadol has a slower absorption and longer half-life when compared to acetaminophen.

<table>
<thead>
<tr>
<th>Parameter [a]</th>
<th>(+)- Tramadol</th>
<th>(-)- Tramadol</th>
<th>(+)- M1</th>
<th>(-)- M1</th>
<th>Acetaminophen</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(_{\text{max}}) (ng/mL)</td>
<td>64.3 (9.3)</td>
<td>55.5 (8.1)</td>
<td>10.9 (5.7)</td>
<td>12.8 (4.2)</td>
<td>4.2 (0.8)</td>
</tr>
<tr>
<td>t(_{\text{max}}) (h)</td>
<td>1.8 (0.6)</td>
<td>1.8 (0.7)</td>
<td>2.1 (0.7)</td>
<td>2.2 (0.7)</td>
<td>0.9 (0.7)</td>
</tr>
<tr>
<td>CL/F (mL/min)</td>
<td>588 (226)</td>
<td>736 (244)</td>
<td>- -</td>
<td>- -</td>
<td>365 (84)</td>
</tr>
<tr>
<td>t(_{1/2}) (h)</td>
<td>5.1 (1.4)</td>
<td>4.7 (1.2)</td>
<td>7.8 (3.0)</td>
<td>6.2 (1.6)</td>
<td>2.5 (0.6)</td>
</tr>
</tbody>
</table>

For acetaminophen C\(_{\text{max}}\) was measured in mcg/mL.

A single dose pharmacokinetic study of tramadol hydrochloride and acetaminophen tablets in volunteers showed no drug interactions between tramadol and acetaminophen. Upon multiple oral dosing to steady state, however, the bioavailability of tramadol and metabolite M1 was lower for the combination tablets compared to tramadol administered alone. The decrease in AUC was 14% for (+)-tramadol, 10.4% for (-)-tramadol, 11.9% for (+)-M1 and 24.2% for (-)-M1.

The cause of this reduced bioavailability is not clear. Following single- or multiple-dose administration of tramadol hydrochloride and acetaminophen tablets, no significant change in acetaminophen pharmacokinetics was observed when compared to acetaminophen given alone.

Absorption

The absolute bioavailability of tramadol from tramadol hydrochloride and acetaminophen tablets has not been determined. Tramadol hydrochloride has a mean absolute bioavailability of approximately 75% following administration of a single 100 mg oral dose of tramadol hydrochloride tablets. The mean peak plasma concentration of racemic tramadol and M1 after administration of two tramadol hydrochloride and acetaminophen tablets occurs at approximately two and three hours, respectively, post-dose.

Peak plasma concentrations of acetaminophen occur within one hour and are not affected by coadministration with tramadol. Oral absorption of acetaminophen following administration of tramadol hydrochloride and acetaminophen tablets occurs primarily in the small intestine.
Food Effects
When tramadol hydrochloride and acetaminophen tablets was administered with food, the time to peak plasma concentration was delayed for approximately 35 minutes for tramadol and almost one hour for acetaminophen.

However, peak plasma concentrations, and the extents of absorption, of tramadol and acetaminophen were not affected. The clinical significance of this difference is unknown.

Distribution
The volume of distribution of tramadol was 2.6 and 2.9 L/kg in male and female subjects, respectively, following a 100 mg intravenous dose. The binding of tramadol to human plasma proteins is approximately 20% and binding also appears to be independent of concentration up to 10 μg/mL. Saturation of plasma protein binding occurs only at concentrations outside the clinically relevant range.

Acetaminophen appears to be widely distributed throughout most body tissues except fat. Its apparent volume of distribution is about 0.9 L/kg. A relative small portion (~20%) of acetaminophen is bound to plasma protein.

Metabolism
Following oral administration, tramadol is extensively metabolized by a number of pathways, including CYP2D6 and CYP3A4, as well as by conjugation of parent and metabolites. Approximately 30% of the dose is excreted in the urine as unchanged drug, whereas 60% of the dose is excreted as metabolites. The major metabolic pathways appear to be N- and O-demethylation and glucuronidation or sulfation in the liver. Metabolite M1 (O-desmethyltramadol) is pharmacologically active in animal models. Formation of M1 is dependent on CYP2D6 and as such is subject to inhibition, which may affect the therapeutic response (see PRECAUTIONS, Drug Interactions).

Approximately 7% of the population has reduced activity of the CYP2D6 isoenzyme of cytochrome P450. These individuals are “poor metabolizers” of debrisoquine, dextromethorphan, tricyclic antidepressants, among other drugs. Based on a population PK analysis of Phase 1 studies in healthy subjects, concentrations of tramadol were approximately 20% higher in “poor metabolizers” versus “extensive metabolizers,” while M1 concentrations were 40% lower. In vitro drug interaction studies in human liver microsomes indicates that inhibitors of CYP2D6 such as fluoxetine and its metabolite norfluoxetine, amitriptyline and quinidine inhibit the metabolism of tramadol to various degrees. The full pharmacological impact of these alterations in terms of either efficacy or safety is unknown.

Concomitant use of SEROTONIN re-uptake INHIBITORS and MAO INHIBITORS may enhance the risk of adverse events, including seizure (see WARNINGS) and serotonin syndrome.

Acetaminophen is primarily metabolized in the liver by first-order kinetics and involves three principal separate pathways:

a) conjugation with glucuronide;
b) conjugation with sulfate; and
c) oxidation via the cytochrome, P450-dependent, mixed-function oxidase enzyme pathway to form a reactive intermediate metabolite, which conjugates with glutathione and is then further metabolized to form cysteine and mercapturic acid conjugates. The principal cytochrome P450 isoenzyme involved
appears to be CYP2E1, with CYP1A2 and CYP3A4 as additional pathways.

In adults, the majority of acetaminophen is conjugated with glucuronic acid and, to a lesser extent, with sulfate. These glucuronide-, sulfate-, and glutathione-derived metabolites lack biologic activity. In premature infants, newborns, and young infants, the sulfate conjugate predominates.

Elimination

Tramadol is eliminated primarily through metabolism by the liver and the metabolites are eliminated primarily by the kidneys. The plasma elimination half-lives of racemic tramadol and M1 are approximately 5–6 and 7 hours, respectively, after administration of tramadol hydrochloride and acetaminophen tablets. The apparent plasma elimination half-life of racemic tramadol increased to 7–9 hours upon multiple dosing of tramadol hydrochloride and acetaminophen tablets.

The half-life of acetaminophen is about 2 to 3 hours in adults. It is somewhat shorter in children and somewhat longer in neonates and in cirrhotic patients. Acetaminophen is eliminated from the body primarily by formation of glucuronide and sulfate conjugates in a dose-dependent manner. Less than 9% of acetaminophen is excreted unchanged in the urine.

Special Populations

Renal

The pharmacokinetics of tramadol hydrochloride and acetaminophen tablets in patients with renal impairment have not been studied. Based on studies using tramadol alone, excretion of tramadol and metabolite M1 is reduced in patients with creatinine clearance of less than 30 mL/min, adjustment of dosing regimen in this patient population is recommended. (See **DOSAGE and ADMINISTRATION**.) The total amount of tramadol and M1 removed during a 4-hour dialysis period is less than 7% of the administered dose based on studies using tramadol alone.

Hepatic

The pharmacokinetics and tolerability of tramadol hydrochloride and acetaminophen tablets in patients with impaired hepatic function has not been studied. Since tramadol and acetaminophen are both extensively metabolized by the liver, the use of tramadol hydrochloride and acetaminophen tablets in patients with hepatic impairment is not recommended (see **PRECAUTIONS** and **DOSAGE and ADMINISTRATION**).

Geriatric

A population pharmacokinetic analysis of data obtained from a clinical trial in patients with chronic pain treated with tramadol hydrochloride and acetaminophen tablets which included 55 patients between 65 and 75 years of age and 19 patients over 75 years of age, showed no significant changes in pharmacokinetics of tramadol and acetaminophen in elderly patients with normal renal and hepatic function (see **PRECAUTIONS**, Geriatric Use).

Gender

Tramadol clearance was 20% higher in female subjects compared to males on four phase I studies of tramadol hydrochloride and acetaminophen tablets in 50 male and 34 female healthy subjects. The clinical significance of this difference is unknown.
Pediatric
Pharmacokinetics of tramadol hydrochloride and acetaminophen tablets have not been studied in pediatric patients below 16 years of age.

CLINICAL STUDIES
Single Dose Studies for Treatment of Acute Pain
In pivotal single-dose studies in acute pain, two tablets of tramadol hydrochloride and acetaminophen tablets administered to patients with pain following oral surgical procedures provided greater relief than placebo or either of the individual components given at the same dose. The onset of pain relief after tramadol hydrochloride and acetaminophen tablets was faster than tramadol alone. Onset of analgesia occurred in less than one hour. The duration of pain relief after tramadol hydrochloride and acetaminophen tablets was longer than acetaminophen alone.

Analgesia was generally comparable to that of the comparator, ibuprofen.

INDICATIONS & USAGE
Tramadol hydrochloride and acetaminophen tablets is indicated for the short-term (five days or less) management of acute pain.

CONTRAINDICATIONS
Tramadol hydrochloride and acetaminophen tablets should not be administered to patients who have previously demonstrated hypersensitivity to tramadol, acetaminophen, any other component of this product or opioids. Tramadol hydrochloride and acetaminophen tablets are contraindicated in any situation where opioids are contraindicated, including acute intoxication with any of the following: alcohol, hypnotics, narcotics, centrally acting analgesics, opioids or psychotropic drugs. Tramadol hydrochloride and acetaminophen tablets may worsen central nervous system and respiratory depression in these patients.

WARNINGS
Hepatotoxicity
Tramadol hydrochloride and acetaminophen tablets contains acetaminophen and tramadol HCl. Acetaminophen has been associated with cases of acute liver failure, at times resulting in liver transplant and death. Most of the cases of liver injury are associated with the use of acetaminophen at doses that exceed 4,000 milligrams per day, and often involve more than one acetaminophen-containing product. The excessive intake of acetaminophen may be intentional to cause self-harm or unintentional as patients attempt to obtain more pain relief or unknowingly take other acetaminophen-containing products (see Boxed Warning).

The risk of acute liver failure is higher in individuals with underlying liver disease and in individuals who ingest alcohol while taking acetaminophen. Instruct patients to look for acetaminophen or APAP on package labels and not to use more than one product that contains acetaminophen. Instruct patients to seek medical attention immediately upon ingestion of more than 4,000 milligrams of acetaminophen per day, even if they feel well.
Seizure Risk

Seizures have been reported in patients receiving tramadol within the recommended dosage range. Spontaneous postmarketing reports indicate that seizure risk is increased with doses of tramadol above the recommended range. Concomitant use of tramadol increases the seizure risk in patients taking:

- Selective serotonin reuptake inhibitors (SSRI antidepressants or anorectics),
- Tricyclic antidepressants (TCAs), and other tricyclic compounds (e.g., cyclobenzaprine, promethazine, etc.), or
- Other opioids.

Administration of tramadol may enhance the seizure risk in patients taking:

- MAO inhibitors (see also WARNINGS – Use with MAO Inhibitors),
- Neuroleptics, or
- Other drugs that reduce the seizure threshold.

Risk of convulsions may also increase in patients with epilepsy, those with a history of seizures, or in patients with a recognized risk for seizure (such as head trauma, metabolic disorders, alcohol and drug withdrawal, or CNS infections). In tramadol overdose, naloxone administration may increase the risk of seizure.

Suicide Risk

- Do not prescribe tramadol hydrochloride and acetaminophen tablets for patients who are suicidal or addiction-prone.
- Prescribe tramadol hydrochloride and acetaminophen tablets with caution for patients taking tranquilizers or antidepressant drugs and patients who use alcohol in excess and who suffer from emotional disturbance or depression.

The judicious prescribing of tramadol is essential to the safe use of this drug. With patients who are depressed or suicidal, consideration should be given the use of non-narcotic analgesics.

Tramadol-related deaths have occurred in patients with previous histories of emotional disturbances or suicidal ideation or attempts as well as histories of misuse of tranquilizers, alcohol, and other CNS-active drugs (see WARNINGS, Risk of Overdosage).

Serotonin Syndrome Risk

The development of a potentially life-threatening serotonin syndrome may occur with the use of tramadol products, including tramadol hydrochloride and acetaminophen tablets, particularly with concomitant use of serotonergic drugs such as SSRIs, SNRIs, TCAs, MAOIs, and triptans, with metabolism of tramadol (CYP2D6 and CYP3A4 inhibitors). This may occur within the recommended dose (see CLINICAL PHARMACOLOGY, Pharmacokinetics).
Serotonin syndrome may include mental-status changes (e.g., agitation, hallucinations, coma), autonomic instability (e.g., tachycardia, labile blood pressure, hyperthermia), neuromuscular aberrations (e.g., hyperreflexia, incoordination) and/or gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea).

Hypersensitivity/Anaphylaxis

Serious and rarely fatal anaphylactoid reactions have been reported in patients receiving therapy with tramadol. When these events do occur it is often following the first dose. Other reported allergic reactions include pruritus, hives, bronchospasm, angioedema, toxic epidermal necrolysis and Stevens-Johnson syndrome. Patients with a history of anaphylactoid reactions to codeine and other opioids may be at increased risk and therefore should not receive tramadol hydrochloride and acetaminophen tablets (see **CONTRAINDICATIONS**).

There have been postmarketing reports of hypersensitivity and anaphylaxis associated with the use of acetaminophen. Clinical signs included swelling of the face, mouth, and throat, respiratory distress, urticaria, rash, pruritus, and vomiting. There were infrequent reports of life-threatening anaphylaxis requiring emergency medical attention. Instruct patients to discontinue tramadol hydrochloride and acetaminophen immediately and seek medical care if they experience these symptoms. Do not prescribe tramadol hydrochloride and acetaminophen for patients with acetaminophen allergy.

Respiratory Depression

Administer tramadol hydrochloride and acetaminophen tablets cautiously in patients at risk for respiratory depression. In these patients, alternative non-opioid analgesics should be considered. When large doses of tramadol are administered with anesthetic medications or alcohol, respiratory depression may result. Respiratory depression should be treated as an overdose. If naloxone is to be administered, use cautiously because it may precipitate seizures (see **WARNINGS, Seizure Risk** and **OVERDOSAGE**).

Interaction With Central Nervous System (CNS) Depressants

Tramadol hydrochloride and acetaminophen tablets should be used with caution and in reduced dosages when administered to patients receiving CNS depressants such as alcohol, opioids, anesthetic agents, narcotics, phenothiazines, tranquilizers or sedative hypnotics. Tramadol increases the risk of CNS and respiratory depression in these patients.

Interactions With Alcohol and Drugs of Abuse

Tramadol may be expected to have additive effects when used in conjunction with alcohol, other opioids, or illicit drugs that cause central nervous system depression.

Increased Intracranial Pressure or Head Trauma

Tramadol hydrochloride and acetaminophen tablets should be used with caution in patients with increased intracranial pressure or head injury. The respiratory depressant effects of opioids include carbon dioxide retention and secondary elevation of cerebrospinal fluid pressure and may be markedly exaggerated in these patients. Additionally, pupillary changes (miosis) from tramadol may obscure the existence, extent, or course of intracranial pathology.
Clinicians should also maintain a high index of suspicion for adverse drug reactions when evaluating altered mental status in these patients if they are receiving tramadol hydrochloride and acetaminophen tablets (see WARNINGS, Respiratory Depression).

Use in Ambulatory Patients

Tramadol may impair the mental and or physical abilities required for the performance of potentially hazardous tasks such as driving a car or operating machinery. The patient using this drug should be cautioned accordingly.

Use With MAO Inhibitors and Serotonin Re-uptake Inhibitors

Use tramadol hydrochloride and acetaminophen tablets with great caution in patients taking monoamine oxidase inhibitors. Animal studies have shown increased deaths with combined administration of MAO inhibitors and tramadol. Concomitant use of tramadol with MAO inhibitors or SSRI’s increases the risk of adverse events, including seizure and serotonin syndrome.

Use With Alcohol

Tramadol hydrochloride and acetaminophen tablets should not be used concomitantly with alcohol consumption.

The use of tramadol hydrochloride and acetaminophen tablets in patients with liver disease is not recommended.

Use With Other Acetaminophen-containing Products

Due to the potential for acetaminophen hepatotoxicity at doses higher than the recommended dose, tramadol hydrochloride and acetaminophen tablets should not be used concomitantly with other acetaminophen-containing products.

Misuse, Abuse and Diversion

Tramadol has mu-opioid agonist activity. Tramadol hydrochloride and acetaminophen tablets, a tramadol-containing product, can be sought by drug abusers and people with addiction disorders and may be subject to criminal diversion. The possibility of illegal or illicit use should be considered when prescribing or dispensing tramadol hydrochloride and acetaminophen tablets in situations where the physician or pharmacist is concerned about an increased risk of misuse, abuse, or diversion. Misuse or abuse poses a significant risk to the abuser that could result in overdose and death (see DRUG ABUSE AND DEPENDENCE and OVERDOSE).

Concerns about abuse, addiction, and diversion should not prevent the proper management of pain. The development of addiction to opioid analgesics in properly managed patients with pain has been reported to be rare. However, data are not available to establish the true incidence of addiction in chronic pain patients.

Risk of Overdose

Patients taking tramadol should be warned not to exceed the dose recommended by their physician. Tramadol products in excessive doses, either alone or in combination with other CNS depressants, including alcohol, are a cause of drug-related deaths. Patients should be cautioned about the
concomitant use of tramadol products and alcohol because of potentially serious CNS additive effects of these agents. Because of its added depressant effects, tramadol should be prescribed with caution for those patients whose medical condition requires the concomitant administration of sedatives, tranquilizers, muscle relaxants, tricyclic antidepressants, or other CNS depressant drugs.

Patients should be advised of the additive depressant effects of these combinations.

A serious potential consequence of overdosage with acetaminophen is hepatic. Some deaths have occurred as a consequence of the accidental ingestion of excessive quantities of tramadol alone or in combination with other drugs.

In treating an overdose, primary attention should be given to maintaining adequate ventilation along with general supportive treatment (see OVERDOSAGE).

Serious potential consequences of overdosage with acetaminophen are hepatic (centrilobular) necrosis, leading to hepatic failure and death. Emergency help should be sought immediately and treatment initiated immediately if overdose is suspected, even if symptoms are not apparent.

Withdrawal
Withdrawal symptoms may occur if tramadol hydrochloride and acetaminophen tablets is discontinued abruptly (see also DRUG ABUSE AND DEPENDENCE). Reported symptoms have included anxiety, sweating, insomnia, rigors, pain, nausea, tremors, diarrhea, upper respiratory symptoms, piloerection, and rarely hallucinations. Other symptoms that have been reported less frequently with tramadol hydrochloride and acetaminophen tablets discontinuation include: panic attacks, severe anxiety, and paresthesias. Clinical experience suggests that withdrawal symptoms may be avoided by tapering tramadol hydrochloride and acetaminophen tablets at the time of discontinuation.

PRECAUTIONS

General
The recommended dose of tramadol hydrochloride and acetaminophen tablets should not be exceeded. Do not coadminister tramadol hydrochloride and acetaminophen tablets with other tramadol or acetaminophen-containing products. (See WARNINGS, Use With Other Acetaminophen-containing Products and Risk of Overdosage).

Pediatric Use
The safety and effectiveness of tramadol hydrochloride and acetaminophen tablets has not been studied in the pediatric population.

Geriatric Use
In general, dose selection for an elderly patient should be cautious, reflecting the greater frequency of decreased hepatic, renal, or cardiac function; of concomitant disease and multiple drug therapy.

Acute Abdominal Conditions
The administration of tramadol hydrochloride and acetaminophen tablets may complicate the clinical assessment of patients with acute abdominal conditions.
Use in Renal Disease
Tramadol hydrochloride and acetaminophen tablets has not been studied in patients with impaired renal function. Experience with tramadol suggest that impaired renal function results in a decreased rate and extent of excretion of tramadol and its active metabolite, M1. In patients with creatinine clearances of less than 30 mL/min, it is recommended that the dosing interval of tramadol hydrochloride and acetaminophen tablets be increased not to exceed 2 tablets every 12 hours.

Use in Hepatic Disease
Tramadol hydrochloride and acetaminophen tablets has not been studied in patients with impaired hepatic function. The use of tramadol hydrochloride and acetaminophen tablets in patients with hepatic impairment is not recommended (see WARNINGS, Use With Alcohol).

Information for Patients
• Do not take tramadol hydrochloride and acetaminophen tablets if you are allergic to any of its ingredients.
• If you develop signs of allergy such as a rash or difficulty breathing, stop taking tramadol hydrochloride and acetaminophen tablets and contact your healthcare provider immediately.
• Do not take more than 4,000 milligrams of acetaminophen per day. Call your doctor if you took more than the recommended dose.
• Do not take tramadol hydrochloride and acetaminophen tablets in combination with other tramadol or acetaminophen-containing products, including over-the-counter preparations.
• Tramadol hydrochloride and acetaminophen tablets may cause seizures and/or serotonin syndrome with concomitant use of serotonergic agents (including SSRIs, SNRIs, and triptans) or drugs that significantly reduce the metabolic clearance of tramadol.
• Tramadol hydrochloride and acetaminophen tablets may impair mental or physical abilities required for the performance of potentially hazardous tasks such as driving a car or operating machinery.
• Tramadol hydrochloride and acetaminophen tablets should not be taken concomitantly with alcohol-containing beverages during the course of treatment with tramadol hydrochloride and acetaminophen tablets.
• Tramadol hydrochloride and acetaminophen tablets should be used with caution when taking medications such as tranquilizers, hypnotics or other opiate-containing analgesics. Inform the physician if you are pregnant, think you might become pregnant, or are trying to become pregnant (see PRECAUTIONS, Labor and Delivery).
• Understand the single-dose and 24-hour dose limit and the time interval between doses, since exceeding these recommendations can result in respiratory depression, seizures, hepatic toxicity, and death.

Drug Interactions
CYP2D6 and CYP3A4 Inhibitors
Concomitant administration of CYP2D6 and/or CYP3A4 inhibitors (see CLINICAL PHARMACOLOGY, Pharmacokinetics), such as quinidine, fluoxetine, paroxetine and amitriptyline (CYP2D6 inhibitors), and ketoconazole and erythromycin (CYP3A4 inhibitors), may reduce metabolic clearance of tramadol, increasing the risk for serious adverse events including seizures and serotonin
Serotonergic Drugs

There have been postmarketing reports of serotonin syndrome with use of tramadol and SSRIs/SNRIs or MAOIs and α2-adrenergic blockers. Caution is advised when tramadol hydrochloride and acetaminophen tablets is coadministered with other drugs that may affect the serotonergic neurotransmitter systems, such as SSRIs, MAOIs, triptans, linezolid (an antibiotic which is a reversible non-selective MAOI), lithium, or St. John’s Wort. If concomitant treatment of tramadol hydrochloride and acetaminophen tablets with a drug affecting the serotonergic neurotransmitter system is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see WARNINGS, Serotonin Syndrome).

Triptans

Based on the mechanism of action of tramadol and the potential for serotonin syndrome, caution is advised when tramadol hydrochloride and acetaminophen tablets are coadministered with a triptan. If concomitant treatment of tramadol hydrochloride and acetaminophen tablets with a triptan is clinically warranted, careful observation of the patient is advised, particularly during treatment initiation and dose increases (see WARNINGS, Serotonin Syndrome).

Use With Carbamazepine

Patients taking carbamazepine may have a significantly reduced analgesic effect of tramadol. Because carbamazepine increases tramadol metabolism and because of the seizure risk associated with tramadol, concomitant administration of tramadol hydrochloride and acetaminophen tablets and carbamazepine is not recommended.

Use With Quinidine

Tramadol is metabolized to M1 by CYP2D6. Quinidine is a selective inhibitor of that isoenzyme; so that concomitant administration of quinidine and tramadol results in increased concentrations of tramadol and reduced concentrations of M1. The clinical consequences of these findings are unknown. In vitro drug interaction studies in human liver microsomes indicate that tramadol has no effect on quinidine metabolism.

Potential for Other Drugs to Affect Tramadol

In vitro drug interaction studies in human liver microsomes indicate that concomitant administration with inhibitors of CYP2D6 such as fluoxetine, paroxetine, and amitriptyline could result in some inhibition of the metabolism of tramadol. Administration of CYP3A4 inhibitors, such as ketoconazole and erythromycin, or inducers, such as rifampin and St. John’s Wort, with tramadol hydrochloride and acetaminophen tablets may affect the metabolism of tramadol leading to altered tramadol exposure.

Potential for Tramadol to Affect Other Drugs

In vitro studies indicate that tramadol is unlikely to inhibit the CYP3A4-mediated metabolism of other drugs when tramadol is administered concomitantly at therapeutic doses. Tramadol does not appear to induce its own metabolism in humans, since observed maximal plasma concentrations after multiple oral doses are higher than expected based on single-dose data. Tramadol is a mild inducer of selected drug metabolism pathways measured in animals.

Use With Cimetidine

Concomitant administration of tramadol hydrochloride and acetaminophen tablets and cimetidine has not
been studied. Concomitant administration of tramadol and cimetidine does not result in clinically significant changes in tramadol pharmacokinetics. Therefore, no alteration of the tramadol hydrochloride and acetaminophen tablets dosage regimen is recommended.

Use With Digoxin

Postmarketing surveillance of tramadol has revealed rare reports of digoxin toxicity.

Use With Warfarin-Like Compounds

Postmarketing surveillance of both tramadol and acetaminophen individual products have revealed rare alterations of warfarin effect, including elevation of prothrombin times.

While such changes have been generally of limited clinical significance for the individual products, periodic evaluation of prothrombin time should be performed when tramadol hydrochloride and acetaminophen tablets and warfarin-like compounds are administered concurrently.

Carcinogenesis, Mutagenesis, Impairment of Fertility

There are no animal or laboratory studies on the combination product (tramadol and acetaminophen) to evaluate carcinogenesis, mutagenesis, or impairment of fertility.

A slight but statistically significant increase in two common murine tumors, pulmonary and hepatic, was observed in a mouse carcinogenicity study, particularly in aged mice. Mice were dosed orally up to 30 mg/kg (90 mg/m² or 0.5 times the maximum daily human tramadol dosage of 185 mg/m²) for approximately two years, although the study was not done with the Maximum Tolerated Dose. This finding is not believed to suggest risk in humans. No such finding occurred in rat carcinogenicity study (dosing orally up to 30 mg/kg, 180 mg/m², or 1 time the maximum daily human tramadol dosage).

Tramadol was not mutagenic in the following assays: Ames Salmonella microsomal activation test, CHO/HPRT mammalian cell assay, mouse lymphoma assay (in the absence of metabolic activation), dominant lethal mutation tests in mice, chromosome aberration test in Chinese hamsters, and bone marrow micronucleus tests in mice and Chinese hamsters. Weakly mutagenic results occurred in the presence of metabolic activation in the mouse lymphoma assay and micronucleus test in rats. Overall, the weight of evidence from these tests indicates that tramadol does not pose a genotoxic risk to humans.

No effects on fertility were observed for tramadol at oral dose levels up to 50 mg/kg (350 mg/m²) in male rats and 75 mg/kg (450 mg/m²) in female rats. These dosages are 1.6 and 2.4 times the maximum daily human tramadol dosage of 185 mg/m².

Pregnancy

Teratogenic Effects: Pregnancy Category C

No drug-related teratogenic effects were observed in the progeny of rats treated orally with tramadol and acetaminophen. The tramadol/acetaminophen combination product was shown to be embryotoxic and fetotoxic in rats at a maternally toxic dose, 50/434 mg/kg tramadol/acetaminophen (300/2604 mg/m² or 1.6 times the maximum daily human tramadol/acetaminophen dosage of 185/1591 mg/m²), but was not teratogenic at this dose level.
Embryo and fetal toxicity consisted of decreased fetal weights and increased supernumerary ribs.

Non-teratogenic Effects:
Tramadol alone was evaluated in peri- and post-natal studies in rats. Progeny of dams receiving oral (gavage) dose levels of 50 mg/kg (300 mg/m² or 1.6 times the maximum daily human tramadol dosage) or greater had decreased weights, and pup survival was decreased early in lactation at 80 mg/kg (480 mg/m² or 2.6 times the maximum daily human tramadol dosage).

There are no adequate and well-controlled studies in pregnant women. Tramadol hydrochloride and acetaminophen tablets should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Neonatal seizures, neonatal withdrawal syndrome, fetal death and stillbirth have been reported with tramadol hydrochloride during postmarketing.

Labor and Delivery
Tramadol hydrochloride and acetaminophen tablets should not be used in pregnant women prior to or during labor unless the potential benefits outweigh the risks. Safe use in pregnancy has not been established. Chronic use during pregnancy may lead to physical dependence and postpartum withdrawal symptoms in the newborn (see **DRUG ABUSE AND DEPENDENCE**). Tramadol has been shown to cross the placenta. The mean ratio of serum tramadol in the umbilical veins compared to maternal veins was 0.83 for 40 women given tramadol during labor. The effect of tramadol hydrochloride and acetaminophen tablets, if any, on the later growth, development, and functional maturation of the child is unknown.

Nursing Mothers
Tramadol hydrochloride and acetaminophen tablets are not recommended for obstetrical preoperative medication or for post-delivery analgesia in nursing mothers because its safety in infants and newborns has not been studied. Following a single IV 100 mcg dose of tramadol, the cumulative excretion in breast milk within 16 hours post-dose was 100 μg of tramadol (0.1% of the maternal dose) and 27 mcg of M1.

ADVERSE REACTIONS
Table 2 reports the incidence rate of treatment-emergent adverse events over five days of tramadol hydrochloride and acetaminophen tablets use in clinical trials (subjects took an average of at least 6 tablets per day).

<table>
<thead>
<tr>
<th>Body System Preferred Term</th>
<th>Tramadol hydrochloride acetaminophen tablets (N = 142) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal System Disorders</td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td>6</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>3</td>
</tr>
<tr>
<td>Nausea</td>
<td></td>
</tr>
</tbody>
</table>
Incidence at least 1%, causal relationship at least possible or greater: the following lists adverse reactions that occurred with an incidence of at least 1% in single-dose or repeated-dose clinical trials of tramadol hydrochloride and acetaminophen tablets.

<table>
<thead>
<tr>
<th>System</th>
<th>Adverse Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body as a Whole</td>
<td>Asthenia, fatigue, hot flushes</td>
</tr>
<tr>
<td>Central and Peripheral Nervous System</td>
<td>Dizziness, headache, tremor</td>
</tr>
<tr>
<td>Gastrointestinal System</td>
<td>Abdominal pain, constipation, diarrhea, dyspepsia, flatulence, dry mouth, nausea, vomiting</td>
</tr>
<tr>
<td>Psychiatric Disorders</td>
<td>Anorexia, anxiety, confusion, euphoria, insomnia, nervousness, somnolence</td>
</tr>
<tr>
<td>Skin and Appendages</td>
<td>Pruritus, rash, increased sweating.</td>
</tr>
</tbody>
</table>

Number of males = 62

Selected Adverse events occurring at less than 1%: the following lists clinically relevant adverse reactions that occurred with an incidence of less than 1% in tramadol hydrochloride and acetaminophen tablets clinical trials.

<table>
<thead>
<tr>
<th>System</th>
<th>Adverse Reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body as a Whole</td>
<td>Chest pain, rigors, syncope, withdrawal syndrome</td>
</tr>
<tr>
<td>Cardiovascular Disorders</td>
<td>Hypertension, aggravated hypertension, hypotension</td>
</tr>
<tr>
<td>Central and Peripheral Nervous System</td>
<td>Ataxia, convulsions, hypertonia, migraine, aggravated migraine, involuntary muscle contractions, paresthesias, stupor, vertigo</td>
</tr>
</tbody>
</table>
Gastrointestinal System – Dysphagia, melena, tongue edema

Hearing and Vestibular Disorders – Tinnitus
Heart Rate and Rhythm Disorders – Arrhythmia, palpitation, tachycardia
Liver and Biliary System – Hepatic function abnormal
Metabolic and Nutritional Disorders – Weight decrease
Psychiatric Disorders – Amnesia, depersonalization, depression, drug abuse, emotional lability, hallucination, impotence, paroniria, abnormal thinking
Red Blood Cell Disorders – Anemia
Respiratory System – Dyspnea
Urinary System – Albuminuria, micturition disorder, oliguria, urinary retention
Vision Disorders – Abnormal vision

Other clinically significant adverse experiences previously reported with tramadol hydrochloride.

Other events which have been reported with the use of tramadol products and for which a causal association has not been determined include: vasodilation, orthostatic hypotension, myocardial ischemia, pulmonary edema, allergic reactions (including anaphylaxis and urticaria, Stevens-Johnson syndrome/TENS), cognitive dysfunction, difficulty concentrating, depression, suicidal tendency, hepatitis, liver failure and gastrointestinal bleeding. Reported laboratory abnormalities included elevated creatinine and liver function tests. Serotonin syndrome (whose symptoms may include mental status change, hyperreflexia, fever, shivering, tremor, agitation, diaphoresis, seizures and coma) has been reported with tramadol when used concomitantly with other serotonergic agents such as SSRIs and MAOIs.

Other clinically significant adverse experiences previously reported with acetaminophen.

Allergic reactions (primarily skin rash) or reports of hypersensitivity secondary to acetaminophen are rare and generally controlled by discontinuation of the drug and, when necessary, symptomatic treatment.

DRUG ABUSE AND DEPENDENCE

Abuse

Tramadol has mu-opioid agonist activity. Tramadol hydrochloride and acetaminophen tablets, a tramadol containing product, can be abused and may be subject to criminal diversion.

Addiction is a primary, chronic, neurobiologic disease, with genetic, psychosocial, and environmental factors influencing its development and manifestations. Drug addiction is characterized by behaviors that include one or more of the following: impaired control over drug use, compulsive use, use for non-medical purposes, continued use despite harm or risk of harm, and craving. Drug addiction is a treatable disease, utilizing a multidisciplinary approach, but relapse is common.

“Drug-seeking” behavior is very common in addicts and drug abusers. Drug-seeking tactics include emergency calls or visits near the end of office hours, refusal to undergo appropriate examination,
testing or referral, repeated “loss” of prescriptions, tampering with prescriptions and reluctance to provide prior medical records or contact information for other treating physician(s). “Doctor shopping” to obtain additional prescriptions is common among drug abusers and people suffering from untreated addiction.

Abuse and addiction are separate and distinct from physical dependence and tolerance. Physicians should be aware that addiction may not be accompanied by concurrent tolerance and symptoms of physical dependence in all addicts.

In addition, abuse of tramadol hydrochloride and acetaminophen tablets can occur in the absence of true addiction and is characterized by misuse for non-medical purposes, often in combination with other psychoactive substances.

Concerns about abuse and addiction should not prevent the proper management of pain. However, all patients treated with opioids require careful monitoring for signs of abuse and addiction, because use of opioid analgesic products carries the risk of addiction even under appropriate medical use.

Proper assessment of the patient and periodic reevaluation of therapy are appropriate measures that help to limit the potential abuse of this product.

Tramadol hydrochloride and acetaminophen tablets are intended for oral use only.

Dependence

Tolerance is the need for increasing doses of drugs to maintain a defined effect such as analgesia (in the absence of disease progression or other external factors). Physical dependence is manifested by withdrawal symptoms after abrupt discontinuation of a drug or upon administration of an antagonist (see also **WARNINGS, Withdrawal**).

The opioid abstinence or withdrawal syndrome is characterized by some or all of the following: restlessness, lacrimation, rhinorrhea, yawning, perspiration, chills, myalgia, and mydriasis. Other symptoms also may develop, including irritability, anxiety, backache, joint pain, weakness, abdominal cramps, insomnia, nausea, anorexia, vomiting, diarrhea, or increased blood pressure, respiratory rate, or heart rate.

Generally, tolerance and/or withdrawal are more likely to occur the longer a patient is on continuous therapy with tramadol hydrochloride and acetaminophen tablets.

OVERDOSAGE

Tramadol hydrochloride and acetaminophen tablets is a combination product. The clinical presentation of overdose may include the signs and symptoms of tramadol toxicity, acetaminophen toxicity or both. The initial symptoms of tramadol overdose may include respiratory depression and/or seizures. The initial symptoms seen within the first 24 hours following an acetaminophen overdose are: anorexia, nausea, vomiting, malaise, pallor and diaphoresis. An overdosage of tramadol hydrochloride and acetaminophen tablets may be a potentially lethal poly drug overdose, and consultation with a regional poison control center is recommended.

Tramadol
Acute overdosage with tramadol can be manifested by respiratory depression, somnolence progressing to stupor or coma, skeletal muscle flaccidity, cold and clammy skin, constricted pupils, seizures, bradycardia, hypotension, cardiac arrest, and death. Deaths due to overdose have been reported with abuse and misuse of tramadol (see **WARNINGS, Misuse, Abuse, and Diversion**). Review of case reports has indicated that the risk of fatal overdose is further increased when tramadol is abused concurrently with alcohol or other CNS depressants, including other opioids.

In the treatment of tramadol overdosage, primary attention should be given to the reestablishment of a patent airway and institution of assisted or controlled ventilation. Supportive measures (including oxygen and vasopressors) should be employed in the management of circulatory shock and pulmonary edema accompanying overdose as indicated.

Cardiac arrest or arrhythmias may require cardiac massage or defibrillation.

While naloxone will reverse some, but not all, symptoms caused by overdosage with tramadol, the risk of seizures is also increased with naloxone administration. In animals, convulsions following the administration of toxic doses of tramadol hydrochloride and acetaminophen tablets could be suppressed with barbiturates or benzodiazepines but were increased with naloxone. Naloxone administration did not change the lethality of an overdose in mice.

Hemodialysis is not expected to be helpful in an overdose because it removes less than 7% of the administered dose in a 4-hour dialysis period.

Acetaminophen

In *acetaminophen* overdosage, dose-dependent, potentially fatal hepatic necrosis is the most serious adverse effect.

Renal tubular necrosis, hypoglycemic coma, and coagulation defects also may occur. Early symptoms following a potentially hepatotoxic overdose may include: nausea, vomiting, diaphoresis, and general malaise. Clinical and laboratory evidence of hepatic toxicity may not be apparent until 48 to 72 hours post-ingestion.

In the treatment of acetaminophen overdosage, gastric decontamination with activated charcoal should be administered just prior to N-acetylcysteine (NAC) to decrease systemic absorption if acetaminophen ingestion is known or suspected to have occurred within a few hours of presentation. Serum acetaminophen levels should be obtained immediately if the patient presents 4 or more hours after ingestion to assess potential risk of hepatotoxicity; acetaminophen levels drawn less than 4 hours post-ingestion may be misleading. To obtain the best possible outcome, NAC should be administered as soon as possible where impending or evolving liver injury is suspected.

Intravenous NAC may be administered when circumstances preclude oral administration. Vigorous supportive therapy is required in severe intoxication. Procedures to limit the continuing absorption of the drug must be readily performed since the hepatic injury is dose-dependent and occurs early in the course of intoxication.

DOSAGE & ADMINISTRATION

For the short-term (five days or less) management of acute pain, the recommended dose of tramadol
hydrochloride and acetaminophen tablets are 2 tablets every 4 to 6 hours as needed for pain relief up to a maximum of 8 tablets per day.

Individualization of Dose
In patients with creatinine clearances of less than 30 mL/min, it is recommended that the dosing interval of tramadol hydrochloride and acetaminophen tablets be increased not to exceed 2 tablets every 12 hours.

Dose selection for an elderly patient should be cautious, in view of the potential for greater sensitivity to adverse events.

HOW SUPPLIED
Tramadol hydrochloride and acetaminophen tablets, 37.5 mg/325 mg are yellow, capsule-shaped, film-coated tablets imprinted “alg” on one side and “219” on the other side.

Bottles of 100's : NDC 67877-322-01
Bottles of 500's : NDC 67877-322-05
Bottles of 1000's: NDC 67877-322-10

Storage and Handling
Dispense in a tight container. Store at 20° to 25°C (68° to 77°F) [See USP Controlled Room Temperature].

Manufactured in India by:
Strides Shasun Limited, Unit - II
R.S.No. 32, 33 & 34, PIMS Road,
Periyakalapet, Puducherry - 605 014, INDIA
PON/DRUGS/16 13 4193

Manufactured for:
Ascend Laboratories LLC
Montvale, NJ 07645

Rev: 03/2016
PI219-01-03

020003410

PACKAGE LABEL.PRINCIPAL DISPLAY PANEL
Tramadol Hydrochloride and Acetaminophen Tablets, USP
37.5 mg / 325 mg
Rx only
TRAMADOL HCL AND ACETAMINOPHEN
tramadol hcl and acetaminophen tablet, film coated

Product Information
- **Product Type**: HUMAN PRESCRIPTION DRUG
- **Route of Administration**: ORAL
- **Item Code (Source)**: NDC:67877-322
- **NDC**: 67877-322-01

Active Ingredient/Active Moiety

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Basis of Strength</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAMADOL HYDROCHLORIDE (UNII: 9N7R477WCK) (TRAMADOL - UNIE39J1LGIJ30J)</td>
<td>TRAMADOL HYDROCHLORIDE</td>
<td>37.5 mg</td>
</tr>
<tr>
<td>ACETAMINOPHEN (UNII: 362O9ITL9D) (ACETAMINOPHEN - UNIE362O9ITL9D)</td>
<td>ACETAMINOPHEN</td>
<td>325 mg</td>
</tr>
</tbody>
</table>

Inactive Ingredients

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROSPovidone (UNII: 68401960MK)</td>
<td></td>
</tr>
<tr>
<td>HYPROMELLOSES (UNII: 3NXW29V3WO)</td>
<td></td>
</tr>
<tr>
<td>FERRIC OXIDE YELLOW (UNII: EX438O2MRT)</td>
<td></td>
</tr>
<tr>
<td>MAGNESIUM STEARATE (UNII: 70097M63D0)</td>
<td></td>
</tr>
<tr>
<td>CELLULOSE, MICROCRYSTALLINE (UNII: 0P13R32D61U)</td>
<td></td>
</tr>
<tr>
<td>STARCH, CORN (UNII: 08232NY3S1)</td>
<td></td>
</tr>
<tr>
<td>POLYETHYlene GLYCOLs (UNII: 3WJQ06SW1A)</td>
<td></td>
</tr>
<tr>
<td>SODIUM STARCH GLYCOLATE TYPE A POTATO (UNII: 5856J3G2A2)</td>
<td></td>
</tr>
<tr>
<td>TITANIUM DIOXIDE (UNII: 15F19V2JP)</td>
<td></td>
</tr>
</tbody>
</table>
Product Characteristics

<table>
<thead>
<tr>
<th>Color</th>
<th>YELLOW</th>
<th>Score</th>
<th>no score</th>
<th>Shape</th>
<th>CAPSULE (capsule-shaped)</th>
<th>Size</th>
<th>15mm</th>
<th>Flavor</th>
<th>Imprint Code</th>
<th>alg;219</th>
</tr>
</thead>
</table>

Packaging

<table>
<thead>
<tr>
<th>#</th>
<th>Item Code</th>
<th>Package Description</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NDC:67877-322-01</td>
<td>100 in 1 BOTTLE; Type 0: Not a Combination Product</td>
<td>06/15/2016</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NDC:67877-322-05</td>
<td>500 in 1 BOTTLE; Type 0: Not a Combination Product</td>
<td>06/15/2016</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NDC:67877-322-10</td>
<td>1000 in 1 BOTTLE; Type 0: Not a Combination Product</td>
<td>06/15/2016</td>
<td></td>
</tr>
</tbody>
</table>

Marketing Information

<table>
<thead>
<tr>
<th>Marketing Category</th>
<th>Application Number or Monograph Citation</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDA</td>
<td>ANDA202076</td>
<td>06/15/2016</td>
<td></td>
</tr>
</tbody>
</table>

Labeler - Ascend Laboratories, LLC (141250469)

Establishment

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>ID/FEI</th>
<th>Business Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strides Shasun Limited</td>
<td>915786829</td>
<td>MANUFACTURE(67877-322)</td>
<td></td>
</tr>
</tbody>
</table>