OXACILLIN - oxacillin sodium injection, powder, for solution
AuroMedics Pharma LLC

OXACILLIN FOR INJECTION, USP
Rx only

For Intramuscular or Intravenous Injection

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Oxacillin for Injection, USP and other antibacterial drugs, Oxacillin for Injection, USP should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

DESCRIPTION

Oxacillin for Injection, USP is a semisynthetic penicillin antibiotic derived from 6-amino-penicillanic acid. It is the sodium salt in a parenteral dosage form. Each vial of Oxacillin for Injection, USP contains oxacillin sodium monohydrate equivalent to 2 grams of oxacillin. The sodium content is 57.30 mg [2.5 mEq] per gram oxacillin. The product is buffered with 20 mg sterile disodium hydrogen phosphate per gram oxacillin.

Oxacillin for Injection, USP is a sterile, white to off-white powder supplied in vials.

Oxacillin sodium, C_{19}H_{18}N_{3}NaO_{5}S • H_{2}O molecular weight 441.43, is designated as 4-Thia-1-azabicyclo [3.2.0]heptane-2-carboxylic acid, 3,3-dimethyl-6-[[5-methyl-3-phenyl-4-isoxazolyl] carbonyl] amino]-7-oxo-, monosodium salt, monohydrate, [2S(2α,5α,6β)] and has the following structural formula:

![Structural formula of oxacillin sodium](image)

CLINICAL PHARMACOLOGY

Intravenous administration provides peak serum levels approximately 5 minutes after the injection is completed. Slow I.V. administration of 500 mg gives a peak serum level of 43 mcg/mL after 5 minutes with a half-life of 20 to 30 minutes.

The penicillinase-resistant penicillins bind to serum protein, mainly albumin. The degree of protein binding reported for oxacillin is 94.2% ± 2.1%. Reported values vary with the method of study and the investigator.

The penicillinase-resistant penicillins vary in the extent to which they are distributed in the body fluids. With normal doses, insignificant concentrations are found in the cerebrospinal fluid and aqueous humor.
All the drugs in this class are found in therapeutic concentrations in the pleural, bile, and amniotic fluids.

The penicillinase-resistant penicillins are rapidly excreted primarily as unchanged drug in the urine by glomerular filtration and active tubular secretion. The elimination half-life for oxacillin is about 0.5 hours. Nonrenal elimination includes hepatic inactivation and excretion in bile.

Probenecid blocks the renal tubular secretion of penicillins. Therefore, the concurrent administration of probenecid prolongs the elimination of oxacillin and, consequently, increases the serum concentration.

Intramuscular injections give peak serum levels 30 minutes after injection. A 250 mg dose gives a level of 5.3 mcg/mL while a 500 mg dose peaks at 10.9 mcg/mL. Intravenous injection gives a peak about 5 minutes after the injection is completed. Slow I.V. dosing with 500 mg gives a 5 minute peak of 43 mcg/mL with a half-life of 20 to 30 minutes.

Microbiology

Penicillinase-resistant penicillins exert a bactericidal action against penicillin susceptible microorganisms during the state of active multiplication. All penicillins inhibit the biosynthesis of the bacterial cell wall.

The drugs in this class are highly resistant to inactivation by staphylococcal penicillinase and are active against penicillinase producing strains of Staphylococcus aureus. The penicillinase-resistant penicillins are active in vitro against a variety of other bacteria.

Susceptibility Test Methods

When available, the clinical microbiology laboratory should provide the results of in vitro susceptibility test results for antimicrobial drugs used in local hospitals and practice areas to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting the most effective antimicrobial.

Dilution Techniques

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure. Standardized procedures are based on dilution method\(^1,2\) (broth, agar or microdilution) or equivalent using standardized inoculum and concentrations of oxacillin. The MIC values should be interpreted according to the criteria in Table 1.

Diffusion Techniques

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure\(^2,3\) requires the use of standardized inoculum concentrations. It has been determined that the most accurate method to test the susceptibility of microorganisms to penicillinase-resistant penicillins, including oxacillin, by disk diffusion is achieved using disks impregnated with 30 mcg cefoxitin. Interpretation involves correlation of the diameter obtained in the cefoxitin disk test with the MIC for oxacillin.\(^2,4,5\) Reports from the laboratory providing results of the standard single-disk susceptibility test with a 30 microgram cefoxitin disk should be interpreted according to the following criteria in Table 1.
Table 1: Susceptibility Test Interpretive Criteria for Oxacillin

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Oxacillin Minimum Inhibitory Concentrations (mcg/mL)</th>
<th>Cefoxitin Disk Diffusion Diameters (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Susceptible (S)</td>
<td>Resistant (R)</td>
</tr>
<tr>
<td>Staphylococcus aureus, S. lugdunensis</td>
<td>≤ 2</td>
<td>≥ 4</td>
</tr>
<tr>
<td>Coagulase-negative staphylococci*</td>
<td>≤ 0.25</td>
<td>≥ 0.5</td>
</tr>
</tbody>
</table>

*Except S. lugdunensis

A report of “Susceptible” indicates that the pathogen is likely to be inhibited by usually achievable concentrations of the antimicrobial compound in blood. A report of “Resistant” indicates that usually achievable concentrations of the antimicrobial compound in the blood are unlikely to be inhibitory and that other therapy should be selected.

Quality Control

Standardized susceptibility test procedures require the use of laboratory control microorganisms to monitor and ensure the accuracy and precision of the supplies and reagents used in the assay, and the techniques of the individuals performing the test. Standard oxacillin powder should provide MIC values provided below. For the diffusion technique, the 30 mcg cefoxitin disk should provide the following zone diameters with the quality control strains.

Table 2: In Vitro Susceptibility Test Quality Control Ranges for Oxacillin

<table>
<thead>
<tr>
<th>Organism (ATCC #)</th>
<th>Oxacillin MIC Range (mcg/mL)</th>
<th>Cefoxitin Disk Diffusion Range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus (29213)</td>
<td>0.12 - 0.5</td>
<td>Not applicable</td>
</tr>
<tr>
<td>S. aureus (25923)</td>
<td>Not applicable</td>
<td>23 - 29</td>
</tr>
</tbody>
</table>

INDICATIONS AND USAGE

Oxacillin is indicated in the treatment of infections caused by penicillinase producing staphylococci which have demonstrated susceptibility to the drug. Cultures and susceptibility tests should be performed initially to determine the causative organism and its susceptibility to the drug. (See CLINICAL PHARMACOLOGY - Susceptibility Test Methods.)

Oxacillin may be used to initiate therapy in suspected cases of resistant staphylococcal infections prior to the availability of susceptibility test results. Oxacillin should not be used in infections caused by organisms susceptible to penicillin G. If the susceptibility tests indicate that the infection is due to an organism other than a resistant Staphylococcus, therapy should not be continued with oxacillin.

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Oxacillin for Injection, USP and other antibacterial drugs, Oxacillin for Injection, USP should be used only to treat or
prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When
culture and susceptibility information are available, they should be considered in selecting or modifying
antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may
contribute to the empiric selection of therapy.

CONTRAINDICATIONS
A history of a hypersensitivity (anaphylactic) reaction to any penicillin is a contraindication. Solutions
containing dextrose may be contraindicated in patients with known allergy to corn or corn products.

WARNINGS
Serious and occasionally fatal hypersensitivity (anaphylactic shock with collapse) reactions have
occurred in patients receiving penicillin. The incidence of anaphylactic shock in all penicillin-treated
patients is between 0.015 and 0.04 percent. Anaphylactic shock resulting in death has occurred in
approximately 0.002 percent of the patients treated. Although anaphylaxis is more frequent following
parenteral administration, it has occurred in patients receiving oral penicillins.

When penicillin therapy is indicated, it should be initiated only after a comprehensive patient drug and
allergy history has been obtained. If an allergic reaction occurs, the drug should be discontinued and
the patient should receive supportive treatment, e.g., artificial maintenance of ventilation, pressor
amines, antihistamines, and corticosteroids. Individuals with a history of penicillin hypersensitivity may
also experience allergic reactions when treated with a cephalosporin.

Clostridium difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial
agents, including Oxacillin for Injection, USP, and may range in severity from mild diarrhea to fatal
colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of
C. difficile.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin
producing strains of *C. difficile* cause increased morbidity and mortality, as these infections can be
refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients
who present with diarrhea following antibiotic use. Careful medical history is necessary since CDAD
has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibiotic use not directed against *C. difficile* may need to
be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibiotic
treatment of *C. difficile*, and surgical evaluation should be instituted as clinically indicated.

PRECAUTIONS

General

Oxacillin should generally not be administered to patients with a history of sensitivity to any penicillin.
Penicillin should be used with caution in individuals with histories of significant allergies and/or
asthma. Whenever allergic reactions occur, penicillin should be withdrawn unless, in the opinion of the
physician, the condition being treated is life-threatening and amenable only to penicillin therapy. The
use of antibiotics may result in overgrowth of nonsusceptible organisms. If new infections due to
bacteria or fungi occur, the drug should be discontinued and appropriate measures taken.

Prescribing Oxacillin for Injection, USP in the absence of a proven or strongly suspected bacterial
infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

Laboratory Tests

Bacteriologic studies to determine the causative organisms and their susceptibility to oxacillin should be performed. (See CLINICAL PHARMACOLOGY-Microbiology.) In the treatment of suspected staphylococcal infections, therapy should be changed to another active agent if culture tests fail to demonstrate the presence of staphylococci.

Periodic assessment of organ system function including renal, hepatic, and hematopoietic should be made during prolonged therapy with oxacillin.

Blood cultures, white blood cell, and differential cell counts should be obtained prior to initiation of therapy and at least weekly during therapy with oxacillin.

Periodic urinalysis, blood urea nitrogen, and creatinine determinations should be performed during therapy with oxacillin and dosage alterations should be considered if these values become elevated. If any impairment of renal function is suspected or known to exist, a reduction in the total dosage should be considered and blood levels monitored to avoid possible neurotoxic reactions.

AST (SGOT) and ALT (SGPT) values should be obtained periodically during therapy to monitor for possible liver function abnormalities.

Drug Interactions

Tetracycline, a bacteriostatic antibiotic, may antagonize the bactericidal effect of penicillin and concurrent use of these drugs should be avoided.

Oxacillin blood levels may be prolonged by concurrent administration of probenecid which blocks the renal tubular secretion of penicillins.

Carcinogenesis, Mutagenesis, Impairment of Fertility

No long-term animal studies have been conducted with these drugs. Studies on reproduction (nafcillin) in rats and rabbits reveal no fetal or maternal abnormalities before conception and continuously through weaning (one generation).

Pregnancy

Teratogenic Effects

Pregnancy Category B

Reproduction studies performed in the mouse, rat, and rabbit have revealed no evidence of impaired fertility or harm to the fetus due to the penicillinase-resistant penicillins. Human experience with the penicillins during pregnancy has not shown any positive evidence of adverse effects on the fetus. There are, however, no adequate or well-controlled studies in pregnant women showing conclusively that harmful effects of these drugs on the fetus can be excluded. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

Nursing Mothers
Penicillins are excreted in human milk. Caution should be exercised when penicillins are administered to a nursing woman.

Pediatric Use

Because of incompletely developed renal function in pediatric patients, oxacillin may not be completely excreted, with abnormally high blood levels resulting. Frequent blood levels are advisable in this group with dosage adjustments when necessary. All pediatric patients treated with penicillins should be monitored closely for clinical and laboratory evidence of toxic or adverse effects. Safety and effectiveness in pediatric patients have not been established.

The potential for toxic effects in pediatric patients from chemicals that may leach from the single dose premixed intravenous preparation in plastic containers has not been evaluated.

Geriatric Use

Clinical studies of Oxacillin for Injection did not include sufficient number of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

This drug is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. Because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function.

Oxacillin for Injection contains 57.30 mg (2.5 mEq) of sodium per gram. At the usual recommended doses, patients would receive between 57.30 and 343.8 mg/day (2.5 and 15 mEq) of sodium. The geriatric population may respond with a blunted natriuresis to salt loading. This may be clinically important with regard to such diseases as congestive heart failure.

Information for Patients

Patients should be counseled that antibacterial drugs including Oxacillin for Injection, USP should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Oxacillin for Injection, USP is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Oxacillin for Injection, USP or other antibacterial drugs in the future.

Diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

ADVERSE REACTIONS
The reported incidence of allergic reactions to penicillin ranges from 0.7 to 10 percent (see WARNINGS). Sensitization is usually the result of treatment but some individuals have had immediate reactions when first treated. In such cases, it is thought that the patients may have had prior exposure to the drug via trace amounts present in milk and vaccines.

Two types of allergic reactions to penicillins are noted clinically, immediate and delayed.

Immediate reactions usually occur within 20 minutes of administration and range in severity from urticaria and pruritus to angioneurotic edema, laryngospasm, bronchospasm, hypotension, vascular collapse and death. Such immediate anaphylactic reactions are very rare (see WARNINGS) and usually occur after parenteral therapy but have occurred in patients receiving oral therapy. Another type of immediate reaction, an accelerated reaction, may occur between 20 minutes and 48 hours after administration and may include urticaria, pruritus, and fever. Although laryngeal edema, laryngospasm, and hypotension occasionally occur, fatality is uncommon. Delayed allergic reactions to penicillin therapy usually occur after 48 hours and sometimes as late as 2 to 4 weeks after initiation of therapy. Manifestations of this type of reaction include serum sickness-like symptoms (i.e., fever, malaise, urticaria, myalgia, arthralgia, abdominal pain) and various skin rashes. Nausea, vomiting, diarrhea, stomatitis, black or hairy tongue, and other symptoms of gastrointestinal irritation may occur, especially during oral penicillin therapy.

Nervous System Reactions

Neurotoxic reactions similar to those observed with penicillin G may occur with large intravenous doses of oxacillin, especially with patients with renal insufficiency.

Urogenital Reactions

Renal tubular damage and interstitial nephritis have been associated infrequently with the administration of oxacillin. Manifestations of this reaction may include rash, fever, eosinophilia, hematuria, proteinuria, and renal insufficiency.

Gastrointestinal Reactions

Pseudomembranous colitis has been reported with the use of oxacillin. The onset of pseudomembranous colitis symptoms may occur during or after antibiotic treatment (see WARNINGS).

Metabolic Reactions

Hepatotoxicity, characterized by fever, nausea, and vomiting associated with abnormal liver function tests, mainly elevated SGOT levels, has been associated with the use of oxacillin.

To report SUSPECTED ADVERSE EVENTS, contact FDA at 1-800-FDA-1088 or www.fda.gov.

OVERDOSAGE

The signs and symptoms of oxacillin overdosage are those described in the ADVERSE REACTIONS section. If signs or symptoms occur, discontinue use of the medication, treat symptomatically, and institute appropriate supportive measures.
DOSAGE AND ADMINISTRATION

The penicillinase-resistant penicillins are available for oral administration and for intramuscular and intravenous injection. The sodium salts of methicillin, oxacillin, and nafcillin may be administered parenterally and the sodium salts of cloxacillin, dicloxacillin, oxacillin, and nafcillin are available for oral use.

Bacteriologic studies to determine the causative organisms and their susceptibility to oxacillin should always be performed. Duration of therapy varies with the type of severity of infection as well as the overall condition of the patient; therefore, it should be determined by the clinical and bacteriological response of the patient. In severe staphylococcal infections, therapy with oxacillin should be continued for at least 14 days. Therapy should be continued for at least 48 hours after the patient has become afebrile, asymptomatic, and cultures are negative. Treatment of endocarditis and osteomyelitis may require a longer duration of therapy.

Concurrent administration of oxacillin and probenecid increases and prolongs serum penicillin levels. Probenecid decreases the apparent volume of distribution and slows the rate of excretion by competitively inhibiting renal tubular secretion of penicillin. Penicillin-probenecid therapy is generally limited to those infections where very high serum levels of penicillin are necessary.

Oral preparations of the penicillinase-resistant penicillins should not be used as initial therapy in serious, life-threatening infections (see PRECAUTIONS-General). Oral therapy with the penicillinase-resistant penicillins may be used to follow-up the previous use of a parenteral agent as soon as the clinical condition warrants. For intramuscular gluteal injections, care should be taken to avoid sciatic nerve injury. With intravenous administration, particularly in elderly patients, care should be taken because of the possibility of thrombophlebitis.

RECOMMENDED DOSAGES FOR OXACILLIN FOR INJECTION

<table>
<thead>
<tr>
<th>Drug</th>
<th>Adults</th>
<th>Infants and Children <40 kg (88 lbs)</th>
<th>Other Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxacillin</td>
<td>250 to 500 mg IM or IV every 4 to 6 hours (mild to moderate infections)</td>
<td>50 mg/kg/day IM or IV in equally divided doses every 6 hours (mild to moderate infections)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 gram IM or IV every 4 to 6 hours (severe infections)</td>
<td>100 mg/kg/day IM or IV in equally divided doses every 4 to 6 hours (severe infections)</td>
<td>Premature and Neonates 25 mg/kg/day IM or IV</td>
</tr>
</tbody>
</table>

Directions for Use

For Intramuscular Use

Use Sterile Water for Injection, USP. Add 11.5 mL to the 2 gram vial. Shake well until a clear solution is obtained. After reconstitution, vials will contain 250 mg of active drug per 1.5 mL of solution. The reconstituted solution is stable for 3 days at 70°F or for one week under refrigeration (40°F).

For Direct Intravenous Use

Use Sterile Water for Injection, USP or Sodium Chloride Injection, USP. Add 20 mL to the 2 gram vial.
Withdraw the entire contents and administer slowly over a period of approximately 10 minutes.

For Administration by Intravenous Drip

Reconstitute as directed above (For Direct Intravenous Use) prior to diluting with Intravenous Solution.

STABILITY PERIODS FOR OXACILLIN FOR INJECTION, USP

<table>
<thead>
<tr>
<th>Concentration mg/mL</th>
<th>Sterile Water for Injection USP</th>
<th>0.9% Sodium Chloride Injection USP (Isotonic)</th>
<th>Sodium Lactate Solution USP (M/6 Molar)</th>
<th>Dextrose Injection USP (5%)</th>
<th>Dextrose and Sodium Chloride Injection USP (5% Dextrose and 0.45% NaCl)</th>
<th>Invert Sugar Injection USP (10%)</th>
<th>Lactated Ringer’s Injection USP</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-100</td>
<td>4 Days</td>
<td>4 Days</td>
<td>24 Hrs</td>
<td>24 Hrs</td>
<td>6 Hrs</td>
<td>6 Hrs</td>
<td>6 Hrs</td>
</tr>
<tr>
<td>10-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-100</td>
<td>4 Days</td>
<td>6 Hrs</td>
<td>4 Days</td>
<td>4 Days</td>
<td>4 Days</td>
<td>4 Days</td>
<td>4 Days</td>
</tr>
<tr>
<td>10-30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-100</td>
<td>4 Days</td>
<td>6 Hrs</td>
<td>4 Days</td>
<td>4 Days</td>
<td>4 Days</td>
<td>4 Days</td>
<td>4 Days</td>
</tr>
</tbody>
</table>

ROOM TEMPERATURE (25°C)

REFRIGERATION (4°C)

FROZEN (-15°C)

Stability studies on oxacillin sodium at concentrations of 0.5 mg/mL and 2 mg/mL in various intravenous solutions listed below indicate the drug will lose less than 10% activity at room temperature (70°F) during a 6-hour period.

IV Solution

- 5% Dextrose in Normal Saline
- 10% D-Fructose in Water
- 10% D-Fructose in Normal Saline
- Lactated Potassic Saline Injection
- 10% Invert Sugar in Normal Saline
- 10% Invert Sugar Plus 0.3% Potassium Chloride in Water
- Travert 10% Electrolyte #1
- Travert 10% Electrolyte #2
- Travert 10% Electrolyte #3

Only those solutions listed above should be used for the intravenous infusion of oxacillin sodium. The concentration of the antibiotic should fall within the range specified. The drug concentration and the rate and volume of the infusion should be adjusted so that the total dose of oxacillin is administered before the drug loses its stability in the solution in use.

If another agent is used in conjunction with oxacillin therapy, it **should not be physically mixed** with oxacillin but should be administered separately.
Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration, whenever solution and container permit.

Do not add supplementary medication to Oxacillin for Injection, USP.

HOW SUPPLIED

Each vial of Oxacillin for Injection, USP contains oxacillin sodium monohydrate equivalent to 2 grams of oxacillin.

Oxacillin for Injection USP, 2 g vials in a Box of 10 NDC 55150-128-25

Oxacillin for Injection, USP is a sterile, white to off-white powder and after reconstitution it becomes light yellow colored clear liquid.

Store dry powder at 20° to 25°C (68° to 77°F). [See USP Controlled Room Temperature.]

The vial stopper is not made with natural rubber latex.

REFERENCES

ATCC is a trademark of American Type Culture Collection.

Manufactured for:
AuroMedics Pharma LLC
6 Wheeling Road
Dayton, NJ 08810

Manufactured by:
Aurobindo Pharma Limited
Hyderabad–500 072, India

NOVAPLUS is a registered trademark of Novation, LLC.

Issued: 11/2014
NDC 55150-128-25
OXACILLIN
FOR INJECTION, USP
Sterile Buffered - For
Intramuscular or Intravenous use
2 grams/vial
NOVAPLUS is a registered
trademark of Novation, LLC.

NOVAPLUS

Each vial contains: Oxacillin sodium monohydrate equivalent to 2 grams oxacillin. The sodium content is 57.30 mg [2.5 mEq] per gram oxacillin. The product is buffered with 20 mg sterile disodium hydrogen phosphate per gram oxacillin.

Ten single dose 2 gram vials

Rx only

N+ and NOVAPLUS are registered trademarks of Novation, LLC.

NOVAPLUS
OXACILLIN

oxacillin sodium injection, powder, for solution

Product Information

<table>
<thead>
<tr>
<th>Product Type</th>
<th>HUMAN PRESCRIPTION DRUG</th>
<th>Item Code (Source)</th>
<th>NDC:55150-128</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route of Administration</td>
<td>INTRAMUSCULAR, INTRAVENOUS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Active Ingredient/Active Moiety

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Basis of Strength</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXACILLIN SODIUM (UNII: G0V6C994Q5) (OXACILLIN - UNII:UH95VD7V76)</td>
<td>OXACILLIN</td>
<td>2 g</td>
</tr>
</tbody>
</table>

Inactive Ingredients

<table>
<thead>
<tr>
<th>Ingredient Name</th>
<th>Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>SODIUM PHOSPHATE, DIBASIC (UNII: GR686LBA74)</td>
<td></td>
</tr>
</tbody>
</table>

Product Characteristics

<table>
<thead>
<tr>
<th>Color</th>
<th>WHITE (White to Off-white)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>Flavor</td>
<td></td>
</tr>
<tr>
<td>Imprint Code</td>
<td></td>
</tr>
</tbody>
</table>

Packaging

<table>
<thead>
<tr>
<th>#</th>
<th>Item Code</th>
<th>Package Description</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NDC:55150-128-25</td>
<td>10 in 1 BOX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1 in 1 VIAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Marketing Information

<table>
<thead>
<tr>
<th>Marketing Category</th>
<th>Application Number or Monograph Citation</th>
<th>Marketing Start Date</th>
<th>Marketing End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANDA</td>
<td>ANDA20 1539</td>
<td>01/18/2013</td>
<td></td>
</tr>
</tbody>
</table>
Labeler - AuroMedics Pharma LLC (968961354)

<table>
<thead>
<tr>
<th>Establishment</th>
<th>Name</th>
<th>Address</th>
<th>ID/FEI</th>
<th>Business Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurobindo Pharma Limited</td>
<td></td>
<td>918917634</td>
<td></td>
<td>API MANUFACTURE(55150-128)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Establishment</th>
<th>Name</th>
<th>Address</th>
<th>ID/FEI</th>
<th>Business Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurobindo Pharma Limited</td>
<td></td>
<td>918917683</td>
<td></td>
<td>ANALYSIS(55150-128) , MANUFACTURE(55150-128)</td>
</tr>
</tbody>
</table>

Revised: 12/2014

AuroMedics Pharma LLC