ONDANSETRON HYDROCHLORIDE- ondansetron hydrochloride solution
Carilion Materials Management
----------
The active ingredient in Ondansetron Oral Solution, USP is ondansetron hydrochloride (HCl) as the dihydrate, the racemic form of ondansetron and a selective blocking agent of the serotonin 5-HT receptor type. Chemically it is (±) 1, 2, 3, 9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol-1-yl)methyl]-4H-carbazol-4-one, monohydrochloride, dihydrate. It has the following structural formula: 3
The molecular formula is C H N O•HCl•2H O, representing a molecular weight of 365.9. 181932
Ondansetron HCl dihydrate is a white to off-white powder that is soluble in water and normal saline.
Each 5 mL of Ondansetron Oral Solution, USP contains 5 mg of ondansetron HCl dihydrate equivalent to 4 mg of ondansetron. Ondansetron Oral Solution, USP contains the inactive ingredients citric acid anhydrous, glycerin, purified water, saccharin sodium, sodium benzoate, sodium citrate, and strawberry flavor.
Ondansetron is a selective 5-HT receptor antagonist. While its mechanism of action has not been fully characterized, ondansetron is not a dopamine-receptor antagonist. Serotonin receptors of the 5-HT type are present both peripherally on vagal nerve terminals and centrally in the chemoreceptor trigger zone of the area postrema. It is not certain whether ondansetron's antiemetic action is mediated centrally, peripherally, or in both sites. However, cytotoxic chemotherapy appears to be associated with release of serotonin from the enterochromaffin cells of the small intestine. In humans, urinary 5-HIAA (5-hydroxyindoleacetic acid) excretion increases after cisplatin administration in parallel with the onset of emesis. The released serotonin may stimulate the vagal afferents through the 5-HT receptors and initiate the vomiting reflex. 333
In animals, the emetic response to cisplatin can be prevented by pretreatment with an inhibitor of serotonin synthesis, bilateral abdominal vagotomy and greater splanchnic nerve section, or pretreatment with a serotonin 5-HT receptor antagonist. 3
In normal volunteers, single intravenous doses of 0.15 mg/kg of ondansetron had no effect on esophageal motility, gastric motility, lower esophageal sphincter pressure, or small intestinal transit time. Multiday administration of ondansetron has been shown to slow colonic transit in normal volunteers. Ondansetron has no effect on plasma prolactin concentrations.
Ondansetron does not alter the respiratory depressant effects produced by alfentanil or the degree of neuromuscular blockade produced by atracurium. Interactions with general or local anesthetics have not been studied.
Ondansetron is well absorbed from the gastrointestinal tract and undergoes some first-pass metabolism. Mean bioavailability in healthy subjects, following administration of a single 8 mg tablet, is approximately 56%.
Ondansetron systemic exposure does not increase proportionately to dose. AUC from a 16 mg tablet was 24% greater than predicted from an 8 mg tablet dose. This may reflect some reduction of first-pass metabolism at higher oral doses. Bioavailability is also slightly enhanced by the presence of food but unaffected by antacids.
Ondansetron is extensively metabolized in humans, with approximately 5% of a radiolabeled dose recovered as the parent compound from the urine. The primary metabolic pathway is hydroxylation on the indole ring followed by subsequent glucuronide or sulfate conjugation. Although some nonconjugated metabolites have pharmacologic activity, these are not found in plasma at concentrations likely to significantly contribute to the biological activity of ondansetron.
metabolism studies have shown that ondansetron is a substrate for human hepatic cytochrome P-450 enzymes, including CYP1A2, CYP2D6, and CYP3A4. In terms of overall ondansetron turnover, CYP3A4 played the predominant role. Because of the multiplicity of metabolic enzymes capable of metabolizing ondansetron, it is likely that inhibition or loss of one enzyme (e.g., CYP2D6 genetic deficiency) will be compensated by others and may result in little change in overall rates of ondansetron elimination. Ondansetron elimination may be affected by cytochrome P-450 inducers. In a pharmacokinetic study of 16 epileptic patients maintained chronically on CYP3A4 inducers, carbamazepine, or phenytoin, reduction in AUC, C , and T of ondansetron was observed. This resulted in a significant increase in clearance. However, on the basis of available data, no dosage adjustment for ondansetron is recommended (see : ). In vitromax1/21PRECAUTIONSDrug Interactions
In humans, carmustine, etoposide, and cisplatin do not affect the pharmacokinetics of ondansetron.
Gender differences were shown in the disposition of ondansetron given as a single dose. The extent and rate of ondansetron’s absorption is greater in women than men. Slower clearance in women, a smaller apparent volume of distribution (adjusted for weight), and higher absolute bioavailability resulted in higher plasma ondansetron levels. These higher plasma levels may in part be explained by differences in body weight between men and women. It is not known whether these gender-related differences were clinically important. More detailed pharmacokinetic information is contained in Tables 1 and 2 taken from 2 studies.
Age-group (years) |
Mean Weight (kg) |
n |
Peak Plasma Concentration (ng/mL) |
Time of Peak Plasma Concentration (h) |
Mean Elimination Half-life (h) |
Systemic Plasma Clearance L/h/kg |
Absolute Bioavail-ability |
18-40 M |
69.0 |
6 |
26.2 |
2.0 |
3.1 |
0.403 |
0.483 |
F |
62.7 |
5 |
42.7 |
1.7 |
3.5 |
0.354 |
0.663 |
61-74 M |
77.5 |
6 |
24.1 |
2.1 |
4.1 |
0.384 |
0.585 |
F |
60.2 |
6 |
52.4 |
1.9 |
4.9 |
0.255 |
0.643 |
75 M > |
78.0 |
5 |
37.0 |
2.2 |
4.5 |
0.277 |
0.619 |
F |
67.6 |
6 |
46.1 |
2.1 |
6.2 |
0.249 |
0.747 |
Age-group (years) |
Mean Weight (kg) |
n |
Peak Plasma Concentration (ng/mL) |
Time of Peak Plasma Concentration (h) |
Mean Elimination Half-life (h) |
18-43 M |
84.1 |
8 |
125.8 |
1.9 |
4.7 |
F |
71.8 |
8 |
194.4 |
1.6 |
5.8 |
A reduction in clearance and increase in elimination half-life are seen in patients over 75 years of age. In clinical trials with cancer patients, safety and efficacy was similar in patients over 65 years of age and those under 65 years of age; there was an insufficient number of patients over 75 years of age to permit conclusions in that age-group. No dosage adjustment is recommended in the elderly.
In patients with mild-to-moderate hepatic impairment, clearance is reduced 2-fold and mean half-life is increased to 11.6 hours compared to 5.7 hours in normals. In patients with severe hepatic impairment (Child-Pugh score of 10 or greater), clearance is reduced 2-fold to 3-fold and apparent volume of distribution is increased with a resultant increase in half-life to 20 hours. In patients with severe hepatic impairment, a total daily dose of 8 mg should not be exceeded. 2
Due to the very small contribution (5%) of renal clearance to the overall clearance, renal impairment was not expected to significantly influence the total clearance of ondansetron. However, ondansetron oral mean plasma clearance was reduced by about 50% in patients with severe renal impairment (creatinine clearance <30 mL/min). This reduction in clearance is variable and was not consistent with an increase in half-life. No reduction in dose or dosing frequency in these patients is warranted.
Plasma protein binding of ondansetron as measured was 70% to 76% over the concentration range of 10 to 500 ng/mL. Circulating drug also distributes into erythrocytes. in vitro
Four and 8 mg doses of ondansetron oral solution is bioequivalent to corresponding doses of ondansetron tablets and may be used interchangeably. One 24 mg ondansetron tablet is bioequivalent to and interchangeable with three 8 mg ondansetron tablets.
In 2 randomized, double-blind, monotherapy trials, a single 24 mg ondansetron tablet was superior to a relevant historical placebo control in the prevention of nausea and vomiting associated with highly emetogenic cancer chemotherapy, including cisplatin ≥50 mg/m . Steroid administration was excluded from these clinical trials. More than 90% of patients receiving a cisplatin dose ≥50 mg/m in the historical placebo comparator experienced vomiting in the absence of antiemetic therapy. 22
The first trial compared oral doses of ondansetron 24 mg once a day, 8 mg twice a day, and 32 mg once a day in 357 adult cancer patients receiving chemotherapy regimens containing cisplatin ≥50 mg/m . A total of 66% of patients in the ondansetron 24 mg once-a-day group, 55% in the ondansetron 8 mg twice-a-day group, and 55% in the ondansetron 32 mg once-a-day group completed the 24-hour study period with 0 emetic episodes and no rescue antiemetic medications, the primary endpoint of efficacy. Each of the 3 treatment groups was shown to be statistically significantly superior to a historical placebo control. 2
In the same trial, 56% of patients receiving oral ondansetron 24 mg once a day experienced no nausea during the 24-hour study period, compared with 36% of patients in the oral ondansetron 8 mg twice a day group ( = 0.001) and 50% in the oral ondansetron 32 mg once a day group. P
In a second trial, efficacy of the oral ondansetron 24 mg once a day regimen in the prevention of nausea and vomiting associated with highly emetogenic cancer chemotherapy, including cisplatin ≥50 mg/m , was confirmed. 2
In 1 double-blind US study in 67 patients, ondansetron tablets 8 mg administered twice a day were significantly more effective than placebo in preventing vomiting induced by cyclophosphamide-based chemotherapy containing doxorubicin. Treatment response is based on the total number of emetic episodes over the 3-day study period. The results of this study are summarized in Table 3:
|
|||
Ondansetron 8 mg b.i.d. Ondansetron Tablets * |
Placebo |
Value P |
|
Number of patients |
33 |
34 | |
Treatment response | |||
0 Emetic episodes |
20 (61%) |
2 (6%) |
<0.001 |
1-2 Emetic episodes |
6 (18%) |
8 (24%) | |
More than 2 emetic episodes/withdrawn |
7 (21%) |
24 (71%) |
<0.001 |
Median number of emetic episodes |
0.0 |
Undefined † | |
Median time to first emetic episode (h) |
Undefined ‡ |
6.5 |
In 1 double-blind US study in 336 patients, ondansetron tablets 8 mg administered twice a day were as effective as ondansetron tablets 8 mg administered 3 times a day in preventing nausea and vomiting induced by cyclophosphamide-based chemotherapy containing either methotrexate or doxorubicin. Treatment response is based on the total number of emetic episodes over the 3-day study period. The results of this study are summarized in Table 4:
|
||
Ondansetron |
||
8 mg b.i.d. Ondansetron Tablets * |
8 mg t.i.d. Ondansetron Tablets † |
|
Number of patients |
165 |
171 |
Treatment response | ||
0 Emetic episodes |
101 (61%) |
99 (58%) |
1-2 Emetic episodes |
16 (10%) |
17 (10%) |
More than 2 emetic episodes/withdrawn |
48 (29%) |
55 (32%) |
Median number of emetic episodes |
0.0 |
0.0 |
Median time to first emetic episode (h) |
Undefined ‡ |
Undefined ‡ |
Median nausea scores (0-100) § |
6 |
6 |
In uncontrolled trials, 148 patients receiving cyclophosphamide-based chemotherapy were re-treated with ondansetron tablets 8 mg 3 times daily during subsequent chemotherapy for a total of 396 re-treatment courses. No emetic episodes occurred in 314 (79%) of the re-treatment courses, and only 1 to 2 emetic episodes occurred in 43 (11%) of the re-treatment courses.
Three open-label, uncontrolled, foreign trials have been performed with 182 pediatric patients 4 to 18 years old with cancer who were given a variety of cisplatin or noncisplatin regimens. In these foreign trials, the initial dose of ondansetron HCl injection ranged from 0.04 to 0.87 mg/kg for a total dose of 2.16 to 12 mg. This was followed by the administration of ondansetron tablets ranging from 4 to 24 mg daily for 3 days. In these studies, 58% of the 170 evaluable patients had a complete response (no emetic episodes) on day 1. Two studies showed the response rates for patients less than 12 years of age who received ondansetron tablets 4 mg 3 times a day to be similar to those in patients 12 to 18 years of age who received ondansetron tablets 8 mg 3 times daily. Thus, prevention of emesis in these pediatric patients was essentially the same as for patients older than 18 years of age. Overall, ondansetron tablets were well tolerated in these pediatric patients.
In a randomized, double-blind study in 20 patients, ondansetron tablets (8 mg given 1.5 hours before each fraction of radiotherapy for 4 days) were significantly more effective than placebo in preventing vomiting induced by total body irradiation. Total body irradiation consisted of 11 fractions (120 cGy per fraction) over 4 days for a total of 1,320 cGy. Patients received 3 fractions for 3 days, then 2 fractions on day 4.
Ondansetron was significantly more effective than metoclopramide with respect to complete control of emesis (0 emetic episodes) in a double-blind trial in 105 patients receiving single high-dose radiotherapy (800 to 1,000 cGy) over an anterior or posterior field size of ≥80 cm to the abdomen. Patients received the first dose of ondansetron tablets (8 mg) or metoclopramide (10 mg) 1 to 2 hours before radiotherapy. If radiotherapy was given in the morning, 2 additional doses of study treatment were given (1 tablet late afternoon and 1 tablet before bedtime). If radiotherapy was given in the afternoon, patients took only 1 further tablet that day before bedtime. Patients continued the oral medication on a 3 times a day basis for 3 days. 2
Ondansetron was significantly more effective than prochlorperazine with respect to complete control of emesis (0 emetic episodes) in a double-blind trial in 135 patients receiving a 1- to 4-week course of fractionated radiotherapy (180 cGy doses) over a field size of ≥100 cm to the abdomen. Patients received the first dose of ondansetron tablets (8 mg) or prochlorperazine (10 mg) 1 to 2 hours before the patient received the first daily radiotherapy fraction, with 2 subsequent doses on a 3 times a day basis. Patients continued the oral medication on a 3 times a day basis on each day of radiotherapy. 2
Surgical patients who received ondansetron 1 hour before the induction of general balanced anesthesia (barbiturate: thiopental, methohexital, or thiamylal; opioid: alfentanil, sufentanil, morphine, or fentanyl; nitrous oxide; neuromuscular blockade: succinylcholine/curare or gallamine and/or vecuronium, pancuronium, or atracurium; and supplemental isoflurane or enflurane) were evaluated in 2 double-blind studies (1 US study, 1 foreign) involving 865 patients. Ondansetron tablets (16 mg) were significantly more effective than placebo in preventing postoperative nausea and vomiting.
The study populations in all trials thus far consisted of women undergoing inpatient surgical procedures. No studies have been performed in males. No controlled clinical study comparing ondansetron tablets to ondansetron injection has been performed.
The concomitant use of apomorphine with Ondansetron Oral Solution, USP is contraindicated based on reports of profound hypotension and loss of consciousness when apomorphine was administered with Ondansetron Oral Solution, USP.
Ondansetron Oral Solution, USP is contraindicated for patients known to have hypersensitivity to the drug.
Hypersensitivity reactions have been reported in patients who have exhibited hypersensitivity to other selective 5-HT receptor antagonists. 3
ECG changes including QT interval prolongation has been seen in patients receiving ondansetron. In addition, post-marketing cases of Torsade de Pointes have been reported in patients using ondansetron. Avoid ondansetron in patients with congenital long QT syndrome. ECG monitoring is recommended in patients with electrolyte abnormalities (e.g., hypokalemia or hypomagnesemia), congestive heart failure, bradyarrhythmias or patients taking other medicinal products that lead to QT prolongation.
The development of serotonin syndrome has been reported with 5-HT receptor antagonists alone. Most reports have been associated with concomitant use of serotonergic drugs (e.g., selective serotonin reuptake inhibitors (SSRIs), serotonin and norepinephrine reuptake inhibitors (SNRIs), monoamine oxidase inhibitors, mirtazapine, fentanyl, lithium, tramadol, and intravenous methylene blue). Some of the reported cases were fatal. Serotonin syndrome occurring with overdose of ondansetron alone has also been reported. The majority of reports of serotonin syndrome related to 5-HT receptor antagonist use occurred in a post-anesthesia care unit or an infusion center. 33
Symptoms associated with serotonin syndrome may include the following combination of signs and symptoms: mental status changes (e.g., agitation, hallucinations, delirium, and coma), autonomic instability (e.g., tachycardia, labile blood pressure, dizziness, diaphoresis, flushing, hyperthermia), neuromuscular symptoms (e.g., tremor, rigidity, myoclonus, hyperreflexia, incoordination), seizures, with or without gastrointestinal symptoms (e.g., nausea, vomiting, diarrhea). Patients should be monitored for the emergence of serotonin syndrome, especially with concomitant use of ondansetron and other serotonergic drugs. If symptoms of serotonin syndrome occur, discontinue ondansetron and initiate supportive treatment. Patients should be informed of the increased risk of serotonin syndrome, especially if ondansetron is used concomitantly with other serotonergic drugs (see and ). PRECAUTIONSOVERDOSAGE
Ondansetron is not a drug that stimulates gastric or intestinal peristalsis. It should not be used instead of nasogastric suction. The use of ondansetron in patients following abdominal surgery or in patients with chemotherapy-induced nausea and vomiting may mask a progressive ileus and/or gastric distension.
Advise patients of the possibility of serotonin syndrome with concomitant use of ondansetron and another serotonergic agent such as medications to treat depression and migraines. Advise patients to seek immediate medical attention if the following symptoms occur: changes in mental status, autonomic instability, neuromuscular symptoms with or without gastrointestinal symptoms.
Ondansetron does not itself appear to induce or inhibit the cytochrome P-450 drug-metabolizing enzyme system of the liver (see : ). Because ondansetron is metabolized by hepatic cytochrome P-450 drug-metabolizing enzymes (CYP3A4, CYP2D6, CYP1A2), inducers or inhibitors of these enzymes may change the clearance and, hence, the half-life of ondansetron. On the basis of available data, no dosage adjustment is recommended for patients on these drugs. CLINICAL PHARMACOLOGYPharmacokinetics
Based on reports of profound hypotension and loss of consciousness when apomorphine was administered with ondansetron, concomitant use of apomorphine with ondansetron is contraindicated (see ). CONTRAINDICATIONS
In patients treated with potent inducers of CYP3A4 (i.e., phenytoin, carbamazepine, and rifampicin), the clearance of ondansetron was significantly increased and ondansetron blood concentrations were decreased. However, on the basis of available data, no dosage adjustment for ondansetron is recommended for patients on these drugs. 1,3
Serotonin syndrome (including altered mental status, autonomic instability, and neuromuscular symptoms) has been described following the concomitant use of 5-HT receptor antagonists and other serotonergic drugs, including selective serotonin reuptake inhibitors (SSRIs) and serotonin and noradrenaline reuptake inhibitors (SNRIs) (see ). 3WARNINGS
Although no pharmacokinetic drug interaction between ondansetron and tramadol has been observed, data from 2 small studies indicate that ondansetron may be associated with an increase in patient controlled administration of tramadol. 4,5
Tumor response to chemotherapy in the P-388 mouse leukemia model is not affected by ondansetron. In humans, carmustine, etoposide, and cisplatin do not affect the pharmacokinetics of ondansetron.
In a crossover study in 76 pediatric patients, I.V. ondansetron did not increase blood levels of high-dose methotrexate.
The coadministration of ondansetron had no effect on the pharmacokinetics and pharmacodynamics of temazepam.
Carcinogenic effects were not seen in 2-year studies in rats and mice with oral ondansetron doses up to 10 and 30 mg/kg/day, respectively. Ondansetron was not mutagenic in standard tests for mutagenicity. Oral administration of ondansetron up to 15 mg/kg/day did not affect fertility or general reproductive performance of male and female rats.
Reproduction studies have been performed in pregnant rats and rabbits at daily oral doses up to 15 and 30 mg/kg/day, respectively, and have revealed no evidence of impaired fertility or harm to the fetus due to ondansetron. There are, however, no adequate and well-controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.
Ondansetron is excreted in the breast milk of rats. It is not known whether ondansetron is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when ondansetron is administered to a nursing woman.
Little information is available about dosage in pediatric patients 4 years of age or younger (see and sections for use in pediatric patients 4 to 18 years of age). CLINICAL PHARMACOLOGYDOSAGE AND ADMINISTRATION
Of the total number of subjects enrolled in cancer chemotherapy-induced and postoperative nausea and vomiting in US- and foreign-controlled clinical trials, for which there were subgroup analyses, 938 were 65 years of age and over. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals cannot be ruled out. Dosage adjustment is not needed in patients over the age of 65 (see ). CLINICAL PHARMACOLOGY
The following have been reported as adverse events in clinical trials of patients treated with ondansetron, the active ingredient of Ondansetron Oral Solution, USP. A causal relationship to therapy with ondansetron has been unclear in many cases.
The adverse events in Table 5 have been reported in ≥5% of adult patients receiving a single 24 mg ondansetron tablet in 2 trials. These patients were receiving concurrent highly emetogenic cisplatin-based chemotherapy regimens (cisplatin dose ≥50 mg/m ). 2
Event |
Ondansetron 24 mg q.d. n=300 |
Ondansetron 8 mg b.i.d. n=124 |
Ondansetron 32 mg q.d. n=117 |
Headache |
33 (11%) |
16 (13%) |
17 (15%) |
Diarrhea |
13 (4%) |
9 (7%) |
3 (3%) |
The adverse events in Table 6 have been reported in ≥5% of adults receiving either 8 mg of ondansetron tablets 2 or 3 times a day for 3 days or placebo in 4 trials. These patients were receiving concurrent moderately emetogenic chemotherapy, primarily cyclophosphamide-based regimens.
Event |
Ondansetron 8 mg b.i.d. n=242 |
Ondansetron 8 mg t.i.d. n=415 |
Placebo n=262 |
Headache |
58 (24%) |
113 (27%) |
34 (13%) |
Malaise/fatigue |
32 (13%) |
37 (9%) |
6 (2%) |
Constipation |
22 (9%) |
26 (6%) |
1 (<1%) |
Diarrhea |
15 (6%) |
16 (4%) |
10 (4%) |
Dizziness |
13 (5%) |
18 (4%) |
12 (5%) |
There have been rare reports consistent with, but not diagnostic of, extrapyramidal reactions in patients receiving ondansetron.
In 723 patients receiving cyclophosphamide-based chemotherapy in US clinical trials, AST and/or ALT values have been reported to exceed twice the upper limit of normal in approximately 1% to 2% of patients receiving ondansetron tablets. The increases were transient and did not appear to be related to dose or duration of therapy. On repeat exposure, similar transient elevations in transaminase values occurred in some courses, but symptomatic hepatic disease did not occur. The role of cancer chemotherapy in these biochemical changes cannot be clearly determined.
There have been reports of liver failure and death in patients with cancer receiving concurrent medications including potentially hepatotoxic cytotoxic chemotherapy and antibiotics. The etiology of the liver failure is unclear.
The adverse events reported in patients receiving ondansetron tablets and concurrent radiotherapy were similar to those reported in patients receiving ondansetron tablets and concurrent chemotherapy. The most frequently reported adverse events were headache, constipation, and diarrhea.
The adverse events in Table 7 have been reported in ≥5% of patients receiving ondansetron tablets at a dosage of 16 mg orally in clinical trials. With the exception of headache, rates of these events were not significantly different in the ondansetron and placebo groups. These patients were receiving multiple concomitant perioperative and postoperative medications.
Adverse Event |
Ondansetron 16 mg (n=550) |
Placebo (n=531) |
Wound problem |
152 (28%) |
162 (31%) |
Drowsiness/sedation |
112 (20%) |
122 (23%) |
Headache |
49 (9%) |
27 (5%) |
Hypoxia |
49 (9%) |
35 (7%) |
Pyrexia |
45 (8%) |
34 (6%) |
Dizziness |
36 (7%) |
34 (6%) |
Gynecological disorder |
36 (7%) |
33 (6%) |
Anxiety/agitation |
33 (6%) |
29 (5%) |
Bradycardia |
32 (6%) |
30 (6%) |
Shiver(s) |
28 (5%) |
30 (6%) |
Urinary retention |
28 (5%) |
18 (3%) |
Hypotension |
27 (5%) |
32 (6%) |
Pruritus |
27 (5%) |
20 (4%) |
In addition to adverse events reported from clinical trials, the following events have been identified during post-approval use of oral formulations of ondansetron. Because they are reported voluntarily from a population of unknown size, estimates of frequency cannot be made. The events have been chosen for inclusion due to a combination of their seriousness, frequency of reporting, or potential causal connection to ondansetron.
Rarely and predominantly with intravenous ondansetron, transient ECG changes including QT interval prolongation have been reported. Cardiovascular:
Flushing. Rare cases of hypersensitivity reactions, sometimes severe (e.g., anaphylaxis/anaphylactoid reactions, angioedema, bronchospasm, shortness of breath, hypotension, laryngeal edema, stridor) have also been reported. Laryngospasm, shock, and cardiopulmonary arrest have occurred during allergic reactions in patients receiving injectable ondansetron. General:
Liver enzyme abnormalities Hepatobiliary:
Hiccups Lower Respiratory:
Oculogyric crisis, appearing alone, as well as with other dystonic reactions Neurology:
Urticaria, Stevens-Johnson syndrome, and toxic epidermal necrolysis. Skin:
: Cases of transient blindness, predominantly during intravenous administration, have been reported. These cases of transient blindness were reported to resolve within a few minutes up to 48 hours. Special Senses:Eye Disorders
Animal studies have shown that ondansetron is not discriminated as a benzodiazepine nor does it substitute for benzodiazepines in direct addiction studies.
There is no specific antidote for ondansetron overdose. Patients should be managed with appropriate supportive therapy. Individual intravenous doses as large as 150 mg and total daily intravenous doses as large as 252 mg have been inadvertently administered without significant adverse events. These doses are more than 10 times the recommended daily dose.
In addition to the adverse events listed above, the following events have been described in the setting of ondansetron overdose: “Sudden blindness” (amaurosis) of 2 to 3 minutes’ duration plus severe constipation occurred in 1 patient that was administered 72 mg of ondansetron intravenously as a single dose. Hypotension (and faintness) occurred in a patient that took 48 mg of ondansetron tablets. Following infusion of 32 mg over only a 4-minute period, a vasovagal episode with transient second-degree heart block was observed. In all instances, the events resolved completely.
Pediatric cases consistent with serotonin syndrome have been reported after inadvertent oral overdoses of ondansetron (exceeding estimated ingestion of 5 mg/kg) in young children. Reported symptoms included somnolence, agitation, tachycardia, tachypnea, hypertension, flushing, mydriasis, diaphoresis, myoclonic movements, horizontal nystagmus, hyperreflexia, and seizure. Patients required supportive care, including intubation in some cases, with complete recovery without sequelae within 1 to 2 days.
The recommended adult oral dosage of ondansetron is 24 mg given as three 8 mg tablets administered 30 minutes before the start of single-day highly emetogenic chemotherapy, including cisplatin ≥50 mg/m . Multiday, single-dose administration of a 24 mg dosage has not been studied. 2
The recommended adult oral dosage is one 8 mg ondansetron tablet or 10 mL (2 teaspoonfuls equivalent to 8 mg of ondansetron) of Ondansetron Oral Solution, USP given twice a day. The first dose should be administered 30 minutes before the start of emetogenic chemotherapy, with a subsequent dose 8 hours after the first dose. One 8 mg ondansetron tablet or 10 mL (2 teaspoonfuls equivalent to 8 mg of ondansetron) of Ondansetron Oral Solution, USP should be administered twice a day (every 12 hours) for 1 to 2 days after completion of chemotherapy.
For pediatric patients 12 years of age and older, the dosage is the same as for adults. For pediatric patients 4 through 11 years of age, the dosage is one 4 mg ondansetron tablet or 5 mL (1 teaspoonful equivalent to 4 mg of ondansetron) of Ondansetron Oral Solution, USP given 3 times a day. The first dose should be administered 30 minutes before the start of emetogenic chemotherapy, with subsequent doses 4 and 8 hours after the first dose. One 4 mg ondansetron tablet or 5 mL (1 teaspoonful equivalent to 4 mg of ondansetron) of Ondansetron Oral Solution, USP should be administered 3 times a day (every 8 hours) for 1 to 2 days after completion of chemotherapy.
The recommended oral dosage is one 8 mg ondansetron tablet or 10 mL (2 teaspoonfuls equivalent to 8 mg of ondansetron) of Ondansetron Oral Solution, USP given 3 times a day.
one 8 mg ondansetron tablet or 10 mL (2 teaspoonfuls equivalent to 8 mg of ondansetron) of Ondansetron Oral Solution, USP should be administered 1 to 2 hours before each fraction of radiotherapy administered each day. For total body irradiation,
one 8 mg ondansetron tablet or 10 mL (2 teaspoonfuls equivalent to 8 mg of ondansetron) of Ondansetron Oral Solution, USP should be administered 1 to 2 hours before radiotherapy, with subsequent doses every 8 hours after the first dose for 1 to 2 days after completion of radiotherapy. For single high-dose fraction radiotherapy to the abdomen,
one 8 mg ondansetron tablet or 10 mL (2 teaspoonfuls equivalent to 8 mg of ondansetron) of Ondansetron Oral Solution, USP should be administered 1 to 2 hours before radiotherapy, with subsequent doses every 8 hours after the first dose for each day radiotherapy is given. For daily fractionated radiotherapy to the abdomen,
The recommended dosage is 16 mg given as two 8 mg ondansetron tablets or 20 mL (4 teaspoonfuls equivalent to 16 mg of ondansetron) of Ondansetron Oral Solution, USP 1 hour before induction of anesthesia.
The dosage recommendation is the same as for the general population. There is no experience beyond first-day administration of ondansetron.
In patients with severe hepatic impairment (Child-Pugh score of 10 or greater), clearance is reduced and apparent volume of distribution is increased with a resultant increase in plasma half-life. In such patients, a total daily dose of 8 mg should not be exceeded. 2
10003003/07
Revised January 2015
© RLI, 2015
ONDANSETRON HYDROCHLORIDE
ondansetron hydrochloride solution |
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
||||||||||||||||||
|
Labeler - Carilion Materials Management (079239644) |
Registrant - Carilion Materials Management (079239644) |
Establishment | |||
Name | Address | ID/FEI | Business Operations |
---|---|---|---|
Carilion Materials Management | 079239644 | REPACK(68151-1668) |