TOPIRAMATE- topiramate tablet 
REMEDYREPACK INC.

----------

DESCRIPTION

Topiramate is a sulfamate-substituted monosaccharide. Topiramate Tablets are available as 25 mg, 50 mg, 100 mg, and 200 mg round tablets for oral administration.

Topiramate USP is a white crystalline powder with a bitter taste. Topiramate USP is most soluble in alkaline solutions containing sodium hydroxide or sodium phosphate and having a pH of 9 to 10. It is freely soluble in acetone, chloroform, dimethylsulfoxide, and ethanol. The solubility in water is 9.8 mg/mL. Its saturated solution has a pH of 6.3. Topiramate USP has the molecular formula C12H21NO8S and a molecular weight of 339.37. Topiramate USP is designated chemically as 2,3:4,5-Di-O-isopropylidene-sulfamate and has the following structural formula:

MM1



Topiramate tablets contain the following inactive ingredients: lactose monohydrate, microcrystalline cellulose, pre-gelatinized starch, lactose monohydrate, sodium starch glycolate, magnesium stearate, opadry white (titanium dioxide, hypromellose 3cp, hypromellose 6cp, PEG 400, polysorbate 80) for 25 mg tablets, opadry yellow (titanium dioxide, hypromellose 3cp, hypromellose 6cp, PEG 400, polysorbate 80, iron oxide yellow) for 50 mg tablets, opadry yellow (hypromellose 3cp, hypromellose 6cp titanium dioxide, PEG 400, iron oxide yellow, polysorbate 80, iron oxide red) for 100 mg tablets and), opadry pink (titanium dioxide, hypromellose 6cp, PEG 400, iron oxide red) for 200 mg tablets.

CLINICAL PHARMACOLOGY

Mechanism of Action

's efficacy for epilepsy. Electrophysiological and biochemical evidence suggests that topiramate, at pharmacologically relevant concentrations, blocks voltage-dependent sodium channels, augments the activity of the neurotransmitter gamma-aminobutyrate at some subtypes of the GABA-A receptor, antagonizes the AMPA/kainate subtype of the glutamate receptor, and inhibits the carbonic anhydrase enzyme, particularly isozymes II and IV.

Pharmacodynamics

Topiramate has anticonvulsant activity in rat and mouse maximal electroshock seizure (MES) tests. Topiramate is only weakly effective in blocking clonic seizures induced by the GABAA receptor antagonist, pentylenetetrazole. Topiramate is also effective in rodent models of epilepsy, which include tonic and absence-like seizures in the spontaneous epileptic rat (SER) and tonic and clonic seizures induced in rats by kindling of the amygdala or by global ischemia.

Pharmacokinetics

The sprinkle formulation is bioequivalent to the immediate release tablet formulation and, therefore, may be substituted as a therapeutic equivalent.

Absorption of topiramate is rapid, with peak plasma concentrations occurring at approximately 2 hours following a 400 mg oral dose. The relative bioavailability of topiramate from the tablet formulation is about 80% compared to a solution. The bioavailability of topiramate is not affected by food.

The pharmacokinetics of topiramate are linear with dose proportional increases in plasma concentration over the dose range studied (200 to 800 mg/day). The mean plasma elimination half-life is 21 hours after single or multiple doses. Steady state is thus reached in about 4 days in patients with normal renal function. Topiramate is 15 to 41% bound to human plasma proteins over the blood concentration range of 0.5 to 250 mcg/mL. The fraction bound decreased as blood concentration increased.

Carbamazepine and phenytoin do not alter the binding of topiramate. Sodium valproate, at 500 mcg /mL (a concentration 5 to10 times higher than considered therapeutic for valproate) decreased the protein binding of topiramate from 23% to 13%. Topiramate does not influence the binding of sodium valproate.

Metabolism and Excretion

Topiramate is not extensively metabolized and is primarily eliminated unchanged in the urine (approximately 70% of an administered dose). Six metabolites have been identified in humans, none of which constitutes more than 5% of an administered dose. The metabolites are formed via hydroxylation, hydrolysis, and glucuronidation. There is evidence of renal tubular reabsorption of topiramate. In rats, given probenecid to inhibit tubular reabsorption, along with topiramate, a significant increase in renal clearance of topiramate was observed. This interaction has not been evaluated in humans. Overall, oral plasma clearance (CL/F) is approximately 20 to 30 mL/min in humans following oral administration.

Pharmacokinetic Interactions

(see also

Drug Interactions

)

Antiepileptic Drugs

Potential interactions between topiramate and standard AEDs were assessed in controlled clinical pharmacokinetic studies in patients with epilepsy. The effect of these interactions on mean plasma AUCs are summarized under PRECAUTIONS (Table 3).

USE IN SPECIFIC POPULATIONS

Renal Impairment

The clearance of topiramate was reduced by 42% in moderately renally impaired (creatinine clearance 30 to 69 mL/min/1.73m2) and by 54% in severely renally impaired subjects (creatinine clearance <30 mL/min/1.73m2) compared to normal renal function subjects (creatinine clearance >70 mL/min/1.73m2). Since topiramate is presumed to undergo significant tubular reabsorption, it is uncertain whether this experience can be generalized to all situations of renal impairment. It is conceivable that some forms of renal disease could differentially affect glomerular filtration rate and tubular reabsorption resulting in a clearance of topiramate not predicted by creatinine clearance. In general, however, use of one-half the usual starting and maintenance dose is recommended in patients with moderate or severe renal impairment (see

PRECAUTIONS: Adjustment of Dose in Renal Failure

and

DOSAGE AND ADMINISTRATION

).

Hemodialysis

Topiramate is cleared by hemodialysis. Using a high efficiency, counterflow, single pass-dialysate hemodialysis procedure, topiramate dialysis clearance was 120 mL/min with blood flow through the dialyzer at 400 mL/min. This high clearance(compared to 20 to 30 mL/min total oral clearance in healthy adults) will remove a clinically significant amount of topiramate from the patient over the hemodialysis treatment period. Therefore, a supplemental dose may be required (see

DOSAGE AND ADMINISTRATION

).

Hepatic Impairment

Age, Gender, and Race

The pharmacokinetics of topiramate in elderly subjects (65 to 85 years of age, N=16) were evaluated in a controlled clinical study. The elderly subject population had reduced renal function [creatinine clearance (-20%)] compared to young adults. Following a single oral 100 mg dose, maximum plasma concentration for elderly and young adults was achieved at approximately 1 to 2 hours. Reflecting the primary renal elimination of topiramate, topiramate plasma and renal clearance were reduced 21% and 19%, respectively, in elderly subjects, compared to young adults. Similarly, topiramate half-life was longer (13%) in the elderly. Reduced topiramate clearance resulted in slightly higher maximum plasma concentration (23%) and AUC (25%) in elderly subjects than observed in young adults. Topiramate clearance is decreased in the elderly only to the extent that renal function is reduced. As recommended for all patients, dosage adjustment may be indicated in the elderly patient when impaired renal function (creatinine clearance ratemL/min/1.73 m2) is evident. It may be useful to monitor renal function in the elderly patient (see

Special Populations: Renal Impairment

,

PRECAUTIONS: Adjustment of Dose in Renal Failure

and

DOSAGE AND ADMINISTRATION

).

Clearance of topiramate in adults was not affected by gender or race.

Pediatric Pharmacokinetics

Pharmacokinetics of topiramate were evaluated in patients ages 4 to 17 years receiving one or two other antiepileptic drugs. Pharmacokinetic profiles were obtained after one week at doses of 1, 3, and 9 mg/kg/day. Clearance was independent of dose.

Pediatric patients have a 50% higher clearance and consequently shorter elimination half-life than adults. Consequently, the plasma concentration for the same mg/kg dose may be lower in pediatric patients compared to adults. As in adults, hepatic enzyme inducing antiepileptic drugs decrease the steady state plasma concentrations of topiramate.

CLINICAL STUDIES

The studies described in the following sections were conducted using topiramate tablets.

Epilepsy

Monotherapy Controlled Trial

The effectiveness of topiramate as initial monotherapy in adults and children 10 years of age and older with partial onset or primary generalized seizures was established in a multicenter, randomized, double-blind, parallel-group trial.

The trial was conducted in 487 patients diagnosed with epilepsy (6 to 83 years of age) who had 1 or 2 well-documented seizures during the 3-month retrospective baseline phase who then entered the study and received topiramate 25 mg/day for 7 days in an open-label fashion. Forty-nine percent of subjects had no prior AED treatment and 17% had a diagnosis of epilepsy for greater than 24 months. Any AED therapy used for temporary or emergency purposes was discontinued prior to randomization. In the double-blind phase, 470 patients were randomized to titrate up to 50 mg/day or 400 mg/day. If the target dose could not be achieved, patients were maintained on the maximum tolerated dose. Fifty eight percent of patients achieved the maximal dose of 400 mg/day for

Figure 1: Kaplan-Meier Estimates of Cumulative Rates for Time to First Seizure

MM2

Adjunctive Therapy Controlled Trials in Adult Patients With Partial Onset Seizures

The effectiveness of topiramate as an adjunctive treatment for adults with partial onset seizures was established in six multicenter, randomized, double-blind, placebo controlled trials, two comparing several dosages of topiramate and placebo and four comparing a single dosage with placebo, in patients with a history of partial onset seizures, with or without secondarily generalized seizures.

Patients in these studies were permitted a maximum of two antiepileptic drugs (AEDs) in addition to Topiramate Tablets or placebo. In each study, patients were stabilized on optimum dosages of their concomitant AEDs during baseline phase lasting between 4 and 12 weeks. Patients who experienced a prespecified minimum number of partial onset seizures, with or without secondary generalization, during the baseline phase (12 seizures for 12-week baseline, 8 for 8-week baseline, or 3 for 4- week baseline) were randomly assigned to placebo or a specified dose of Topiramate Tablets in addition to their other AEDs.

Following randomization, patients began the double-blind phase of treatment. In five of the six studies, patients received active drug beginning at 100 mg per day; the dose was then increased by 100 mg or 200 mg/day increments weekly or every other week until the assigned dose was reached, unless intolerance prevented increases. In the sixth study (119), the 25 or 50 mg/day initial doses of topiramate were followed by respective weekly increments of 25 or 50 mg/day until the target dose of 200 mg/day was reached. After titration, patients entered a 4, 8, or 12-week stabilization period.

The numbers of patients randomized to each dose, and the actual mean and median doses in the stabilization period are shown in Table 1.

Adjunctive Therapy Controlled Trial in Pediatric Patients Ages 2 to 16 Years With Partial Onset Seizures

The effectiveness of topiramate as an adjunctive treatment for pediatric patients ages 2 to 16 years with partial onset seizures was established in a multicenter, randomized, double-blind, placebo-controlled trial, comparing topiramate and placebo in patients with a history of partial onset seizures, with or without secondarily generalized seizures.

Patients in this study were permitted a maximum of two antiepileptic drugs (AEDs) in addition to Topiramate Tablets or placebo. In this study, patients were stabilized on optimum dosages of their concomitant AEDs during an 8 week baseline phase. Patients who experienced at least six partial onset seizures, with or without secondarily generalized seizures, during the baseline phase were randomly assigned to placebo or Topiramate Tablets in addition to their other AEDs.

Following randomization, patients began the double-blind phase of treatment. Patients received active drug beginning at 25 or 50 mg per day; the dose was then increased by 25 mg to 150 mg/day increments every other week until the assigned dosage of 125, 175, 225, or 400 mg/day based on patients'weight to approximate a dosage of 6 mg/kg per day was reached, unless intolerance prevented increases. After titration, patients entered an 8-week stabilization period.

Adjunctive Therapy Controlled Trial in Patients With Primary Generalized Tonic-Clonic Seizures

The effectiveness of topiramate as an adjunctive treatment for primary generalized tonic-clonic seizures in patients 2 years old and older was established in a multicenter randomized, double-blind, placebo-controlled trial, comparing a single dosage of topiramate and placebo.

Patients in this study were permitted a maximum of two antiepileptic drugs (AEDs) in addition to Topiramate or placebo. Patients were stabilized on optimum dosages of their concomitant AEDs during an 8-week baseline phase. Patients who experienced at least three primary generalized tonic-clonic seizures during the baseline phase were randomly assigned to placebo or Topiramate in addition to their other AEDs.

Following randomization, patients began the double-blind phase of treatment. Patients received active drug beginning at 50 mg per day for four weeks; the dose was then increased by 50 mg to 150 mg/day increments every other week until the assigned dose of 175, 225, or 400 mg/day based on patients'body weight to approximate a dosage of 6 mg/kg per day was reached, unless intolerance prevented increases. After titration, patients entered a 12-week stabilization period.

Adjunctive Therapy Controlled Trial in Patients With Lennox-Gastaut Syndrome

The effectiveness of topiramate as an adjunctive treatment for seizures associated with Lennox-Gastaut syndrome was established in a multicenter, randomized, double blind, placebo-controlled trial comparing a single dosage of topiramate with placebo in patients 2 years of age and older.

Patients in this study were permitted a maximum of two antiepileptic drugs (AEDs) in addition to Topiramate or placebo. Patients who were experiencing at least 60 seizures per month before study entry were stabilized on optimum dosages of their concomitant AEDs during a 4-week baseline phase. Following baseline, patients were randomly assigned to placebo or Topiramate in addition to their other AEDs. Active drug was titrated beginning at 1 mg/kg per day for a week; the dose was then increased to 3 mg/kg per day for one week then to 6 mg/kg per day. After titration, patients entered an 8-week stabilization period. The primary measures of effectiveness were the percent reduction in drop attacks and a parental global rating of seizure severity.

Table 1: Topiramate Dose Summary During the Stabilization Periods of Each of Six Double-Blind, Placebo-Controlled, Add-On Trials in Adults with Partial Onset Seizuresb

Target Topiramate Dosage (mg/day)

ProtocolStabilization DosePlaceboa2004006008001,000

YDN42424041--Mean Dose5.9200390556--Median Dose6.0200400600--YEN44--404540Mean Dose9.7--544739796Median Dose10.0--6008001,000Y1N23-19---Mean Dose3.8-395---Median Dose4.0-400---Y2N30--28--Mean Dose5.7--522--Median Dose6.0--600--Y3N28---25-Mean Dose7.9---568-Median Dose8.0---600-119N90157----Mean Dose8200----Median Dose8200----In all add-on trials, the reduction in seizure rate from baseline during the entire double-blind phase was measured. The median percent reductions in seizure rates and the responder rates (fraction of patients with at least a 50% reduction) by treatment group for each study are shown below in Table 2. As described above, a global improvement in seizure severity was also assessed in the Lennox-Gastaut trial.

Table 2: Efficacy Results in Double-Blind, Placebo-Controlled, Add-On Trials

Protocol Efficacy Results

Placebo2004006008001,000mg/kg/day*

Partial Onset Seizures Studies in AdultsYDN45454546---Median % Reduction11.627.2a47.5b44.7c---% Responders182444d46d---YEN47--484847-Median % Reduction1.7--40.8c41.0c36.0c-% Responders9--40c41c36d-Y1N24-23----Median % Reduction1.1-40.7e----% Responders8-35d----Y2N30--30---Median % Reduction-12.2--46.4f---% Responders10--47c---Y3N28---28--Median % Reduction-20.6---24.3c--% Responders0---43c--119N91-168----Median % Reduction20.044.2c-----% Responders2445c-----Studies in Pediatric PatientsYPN45-----41Median % Reduction10.5-----33.1d% Responders20-----39Primary Generalized Tonic-ClonichYTCN40-----39Median % Reduction9.0-----56.7d% Responders20-----56cLennox-Gastaut SyndromeiYLN49-----46Median % Reduction-5.1-----14.8d% Responders14-----28gImprovement in Seizure Severityj28-----52dSubset analyses of the antiepileptic efficacy of Topiramate Tablets in these studies showed no differences as a function of gender, race, age, baseline seizure rate, or concomitant AED.

INDICATIONS & USAGE

Monotherapy Epilepsy

Topiramate Tablets are indicated as initial monotherapy in patients 10 years of age and older with partial onset or primary generalized tonic-clonic seizures.

Effectiveness was demonstrated in a controlled trial in patients with epilepsy who had no more than 2 seizures in the 3 months prior to enrollment. Safety and effectiveness in patients who were converted to monotherapy from a previous regimen of other anticonvulsant drugs have not been established in controlled trials.

Adjunctive Therapy Epilepsy

Topiramate Tablets are indicated as adjunctive therapy for adults and pediatric patients ages 2 to 16 years with partial onset seizures, or primary generalized tonic-clonic seizures, and in patients 2 years of age and older with seizures associated with Lennox-Gastaut syndrome.

CONTRAINDICATIONS

Topiramate is contraindicated in patients with a history of hypersensitivity to any component of this product.

WARNINGS

PRECAUTIONS

INFORMATION FOR PATIENTS

Patients taking Topiramate should be told to seek immediate medical attention if they experience blurred vision or periorbital pain.

Patients, especially pediatric patients, treated with Topiramate should be monitored closely for evidence of decreased sweating and increased body temperature, especially in hot weather.

Patients, particularly those with predisposing factors, should be instructed to maintain an adequate fluid intake in order to minimize the risk of renal stone formation [see

PRECAUTIONS: Kidney Stones

, for support regarding hydration as a preventative measure].

Patients should be warned about the potential for somnolence, dizziness, confusion, and difficulty concentrating and advised not to drive or operate machinery until they have gained sufficient experience on topiramate to gauge whether it adversely affects their mental and/or motor performance.

Additional food intake may be considered if the patient is losing weight while on this medication.

LABORATORY TESTS

DRUG INTERACTIONS

In vitro studies indicate that topiramate does not inhibit enzyme activity for CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4/5 isozymes.

Antiepileptic Drugs


Potential interactions between topiramate and standard AEDs were assessed in controlled clinical pharmacokinetic studies in patients with epilepsy. The effects of these interactions on mean plasma AUCs are summarized in Table 3.

In Table 3, the second column (AED concentration) describes what happens to the concentration of the AED listed in the first column when topiramate is added.

The third column (topiramate concentration) describes how the coadministration of a drug listed in the first column modifies the concentration of topiramate in experimental settings when Topiramate was given alone.

Table 3: Summary of AED interactions with Topiramate

AED Co-administeredAED ConcentrationTopiramate Concentration

a = Plasma concentration increased 25% in some patients, generally those on a b.i.d. dosing regimen of phenytoin. b = Is not administered but is an active metabolite of carbamazepine. NC = Less than 10% change in plasma concentration. AED = Antiepileptic drug. NE = Not Evaluated. TPMTopiramatePhenytoinNC or 25% increasea48% decreaseCarbamazepine (CBZ)NC 40%decreaseCBZ epoxidebNCNEValproic acid11% decrease14% decreasePhenobarbitalNCNEPrimidoneNCNELamotrigineNC at TPM doses up to 400 mg/day15% increaseIn addition to the pharmacokinetic interaction described in the above table, concomitant administration of valproic acid and topiramate has been associated with hyperammonemia with and without encephalopathy (see

PRECAUTIONS, Hyperammonemia and Encephalopathy Associated with Concomitant Valproic Acid Use

).

Other Drug Interactions

Digoxin:

In a single-dose study, serum digoxin AUC was decreased by 12% with concomitant Topiramate administration. The clinical relevance of this observation has not been established.

CNS Depressants:

Concomitant administration of Topiramate and alcohol or other CNS depressant drugs has not been evaluated in clinical studies. Because of the potential of topiramate to cause CNS depression, as well as other cognitive and/or neuropsychiatric adverse events, topiramate should be used with extreme caution if used in combination with alcohol and other CNS depressants.

Oral Contraceptives:

In a pharmacokinetic interaction study in healthy volunteers with a concomitantly administered combination oral contraceptive product containing 1 mg norethindrone (NET) plus 35 mcg ethinyl estradiol (EE), Topiramate given in the absence of other medications at doses of 50 to 200 mg/day was not associated with statistically significant changes in mean exposure (AUC) to either component of the oral contraceptive. In another study, exposure to EE was statistically significantly decreased at doses of 200, 400, and 800 mg/day (18%, 21%, and 30%, respectively) when given as adjunctive therapy in patients taking valproic acid. In both studies, Topiramate (50 mg/day to 800 mg/day) did not significantly affect exposure to NET. Although there was a dose dependent decrease in EE exposure for doses between 200 to 800 mg/day, there was no significant dose dependent change in EE exposure for doses of 50 to 200 mg/day. The clinical significance of the changes observed is not known. The possibility of decreased contraceptive efficacy and increased breakthrough bleeding should be considered in patients taking combination oral contraceptive products with Topiramate. Patients taking estrogen containing contraceptives should be asked to report any change in their bleeding patterns. Contraceptive efficacy can be decreased even in the absence of breakthrough bleeding.

Hydrochlorothiazide (HCTZ):

A drug-drug interaction study conducted in healthy volunteers evaluated the steady-state pharmacokinetics of HCTZ (25 mg q24h) and topiramate (96 mg q12h) when administered alone and concomitantly. The results of this study indicate that topiramate Cmax increased by 27% and AUC increased by 29% when HCTZ was added to topiramate. The clinical significance of this change is unknown. The addition of HCTZ to topiramate therapy may require an adjustment of the topiramate dose. The steady-state pharmacokinetics of HCTZ were not significantly influenced by the concomitant administration of topiramate. Clinical laboratory results indicated decreases in serum potassium after topiramate or HCTZ administration, which were greater when HCTZ and topiramate were administered in combination.

Pioglitazone:

A drug-drug interaction study conducted in healthy volunteers evaluated the steady-state pharmacokinetics of topiramate and pioglitazone when administered alone and concomitantly. A 15% decrease in the AUCof pioglitazone with no alteration in Cmax,ss was observed. This finding was not statistically significant. In addition, a 13% and 16% decrease in Cmax,ss and AUCrespectively, of the active hydroxy-metabolite was noted as well as a 60% decrease in Cmax,ss and AUCof the active keto-metabolite. The clinical significance of these findings is not known. When Topiramate is added to pioglitazone therapy or pioglitazone is added to Topiramate therapy, careful attention should be given to the routine monitoring of patients for adequate control of their diabetic disease state.

Lithium:

Haloperidol:

The pharmacokinetics of a single dose of haloperidol (5 mg) were not affected following multiple dosing of topiramate (100 mg every 12 hr) in 13 healthy adults (6 M, 7 F).

Amitriptyline:

's clinical response and not on the basis of plasma levels.

Sumatriptan:

Multiple dosing of topiramate (100 mg every 12 hrs) in 24 healthy volunteers (14 M, 10 F) did not affect the pharmacokinetics of single dose sumatriptan either orally (100 mg) or subcutaneously (6 mg).

Risperidone:

There was a 25% decrease in exposure to risperidone (2 mg single dose) in 12 healthy volunteers (6 M, 6 F) receiving 200 mg/day of topiramate. Therefore, patients receiving risperidone in combination with topiramate should be closely monitored for clinical response.

Propranolol:

Multiple dosing of topiramate (200 mg/day) in 34 healthy volunteers (17 M, 17 F) did not affect the pharmacokinetics of propranolol following daily 160 mg doses. Propranolol doses of 160 mg/day in 39 volunteers (27 M, 12 F) had no effect on the exposure to topiramate at a dose of 200 mg/day of topiramate.

Dihydroergotamine:

Multiple dosing of topiramate (200 mg/day) in 24 healthy volunteers (12 M, 12 F) did not affect the pharmacokinetics of a 1 mg subcutaneous dose of dihydroergotamine. Similarly, a 1 mg subcutaneous dose of dihydroergotamine did not affect the pharmacokinetics of a 200 mg/day dose of topiramate in the same study.

Others:

Concomitant use of Topiramate, a carbonic anhydrase inhibitor, with other carbonic anhydrase inhibitors, e.g., acetazolamide or dichlorphenamide, may create a physiological environment that increases the risk of renal stone formation, and should therefore be avoided.

DRUG & OR LABORATORY TEST INTERACTIONS

There are no known interactions of topiramate with commonly used laboratory tests.

CARCINOGENESIS & MUTAGENESIS & IMPAIRMENT OF FERTILITY

An increase in urinary bladder tumors was observed in mice given topiramate (20, 75, and 300 mg/kg) in the diet for 21 months. The elevated bladder tumor incidence, which was statistically significant in males and females receiving 300 mg/kg, was primarily due to the increased occurrence of a smooth muscle tumor considered histomorphologically unique to mice. Plasma exposures in mice receiving 300 mg/kg were approximately 0.5 to 1 times steady-state exposures measured in patients receiving topiramate monotherapy at the recommended human dose (RHD) of 400 mg, and 1.5 to 2 times steady-state topiramate exposures in patients receiving 400 mg of topiramate plus phenytoin. The relevance of this finding to human carcinogenic risk is uncertain. No evidence of carcinogenicity was seen in rats following oral administration of topiramate for 2 years at doses up to 120 mg/kg (approximately 3 times the RHD on a mg/m2 basis).

Topiramate did not demonstrate genotoxic potential when tested in a battery of in vitro and in vivo assays. Topiramate was not mutagenic in the Ames test or the in vitro mouse lymphoma assay; it did not increase unscheduled DNA synthesis in rat hepatocytes in vitro; and it did not increase chromosomal aberrations in human lymphocytes in vitro or in rat bone marrow in vivo.

No adverse effects on male or female fertility were observed in rats at doses up to 100 mg/kg (2.5 times the RHD on a mg/m2 basis).

PREGNANCY

Pregnancy Category C.


Topiramate has demonstrated selective developmental toxicity, including teratogenicity, in experimental animal studies. When oral doses of 20, 100, or 500 mg/kg were administered to pregnant mice during the period of organogenesis, the incidence of fetal malformations (primarily craniofacial defects) was increased at all doses. The low dose is approximately 0.2 times the recommended human dose (RHD=400 mg/day) on a mg/m2 basis. Fetal body weights and skeletal ossification were reduced at 500 mg/kg in conjunction with decreased maternal body weight gain.

In rat studies (oral doses of 20, 100, and 500 mg/kg or 0.2, 2.5, 30 and 400 mg/kg), the frequency of limb malformations (ectrodactyly, micromelia, and amelia) was increased among the offspring of dams treated with 400 mg/kg (10 times the RHD on a mg/m2 basis) or greater during the organogenesis period of pregnancy. Embryotoxicity (reduced fetal body weights, increased incidence of structural variations) was observed at doses as low as 20 mg/kg (0.5 times the RHD on a mg/m2 basis). Clinical signs of maternal toxicity were seen at 400 mg/kg and above, and maternal body weight gain was reduced during treatment with 100 mg/kg or greater.

In rabbit studies (20, 60, and 180 mg/kg or 10, 35, and 120 mg/kg orally during organogenesis), embryo/fetal mortality was increased at 35 mg/kg (2 times the RHD on a mg/m2 basis) or greater, and teratogenic effects (primarily rib and vertebral malformations) were observed at 120 mg/kg (6 times the RHD on a mg/m2 basis).

Evidence of maternal toxicity (decreased body weight gain, clinical signs, and/or mortality) was seen at 35 mg/kg and above.

When female rats were treated during the latter part of gestation and throughout lactation (0.2, 4, 20, and 100 mg/kg or 2, 20, and 200 mg/kg), offspring exhibited decreased viability and delayed physical development at 200 mg/kg (5 times the RHD on a mg/m2 basis) and reductions in pre- and/or postweaning body weight gain at 2 mg/kg (0.05 times the RHD on a mg/m2 basis) and above. Maternal toxicity (decreased body weight gain, clinical signs) was evident at 100 mg/kg or greater.

In a rat embryo/fetal development study with a postnatal component (0.2, 2.5, 30 or 400 mg/kg during organogenesis; noted above), pups exhibited delayed physical development at 400 mg/kg (10 times the RHD on a mg/m2 basis) and persistent reductions in body weight gain at 30 mg/kg (1 times the RHD on a mg/m2 basis) and higher.

There are no studies using Topiramate in pregnant women. Topiramate should be used during pregnancy only if the potential benefit outweighs the potential risk to the fetus.

In post-marketing experience, cases of hypospadias have been reported in male infants exposed in utero to topiramate, with or without other anticonvulsants; however, a causal relationship with topiramate has not been established.

LABOR & DELIVERY

NURSING MOTHERS

Topiramate is excreted in the milk of lactating rats. The excretion of topiramate in human milk has not been evaluated in controlled studies. Limited observations in patients suggest an extensive secretion of topiramate into breast milk. Since many drugs are excreted in human milk, and because the potential for serious adverse reactions in nursing infants to Topiramate is unknown, the potential benefit to the mother should be weighed against the potential risk to the infant when considering recommendations regarding nursing.

PEDIATRIC USE

Safety and effectiveness in patients below the age of 2 years have not been established for the adjunctive therapy treatment of partial onset seizures, primary generalized tonic-clonic seizures, or seizures associated with Lennox-Gastaut syndrome. Safety and effectiveness in patients below the age of 10 years have not been established for the monotherapy treatment of epilepsy. Topiramate is associated with metabolic acidosis. Chronic untreated metabolic acidosis in pediatric patients may cause osteomalacia/rickets and may reduce growth rates. A reduction in growth rate may eventually decrease the maximal height achieved. The effect of topiramate on growth and bone-related sequelae has not been systematically investigated (see

WARNINGS

).

GERIATRIC USE

In clinical trials, 3% of patients were over 60. No age related difference in effectiveness or adverse effects were evident. However, clinical studies of topiramate did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently than younger subjects. Dosage adjustment may be necessary for elderly with impaired renal function (creatinine clearance ratemL/min/1.73 m2) due to reduced clearance of topiramate (see

CLINICAL PHARMACOLOGY

and

DOSAGE AND ADMINISTRATION

).

Race and Gender Effects

Evaluation of effectiveness and safety in clinical trials has shown no race or gender related effects.

ADVERSE REACTIONS

The data described in the following section were obtained using Topiramate Tablets.

Monotherapy Epilepsy

The adverse events in the controlled trial that occurred most commonly in adults in the 400 mg/day group and at a rate higher than the 50 mg/day group were: paresthesia, weight decrease, somnolence, anorexia, dizziness, and difficulty with memory NOS [see Table 4].

The adverse events in the controlled trial that occurred most commonly in children (10 years up to 16 years of age) in the 400 mg/day group and at a rate higher than the 50 mg/day group were: weight decrease, upper respiratory tract infection, paresthesia, anorexia, diarrhea, and mood problems [see Table 5].

Approximately 21% of the 159 adult patients in the 400 mg/day group who received topiramate as monotherapy in the controlled clinical trial discontinued therapy due to adverse events. Adverse events associated with discontinuing therapy (included depression, insomnia, difficulty with memory (NOS), somnolence, paresthesia, psychomotor slowing, dizziness, and nausea.

Approximately 12% of the 57 pediatric patients in the 400 mg/day group who received topiramate as monotherapy in the controlled clinical trial discontinued therapy due to adverse events. Adverse events associated with discontinuing therapy (included difficulty with concentration/attention.

The prescriber should be aware that these data cannot be used to predict the frequency of adverse events in the course of usual medical practice where patient characteristics and other factors may differ from those prevailing during the clinical study. Similarly, the cited frequencies cannot be directly compared with data obtained from other clinical investigations involving different treatments, uses, or investigators. Inspection of these frequencies, however, does provide the prescribing physician with a basis to estimate the relative contribution of drug and non-drug factors to the adverse event incidences in the population studied.

Table 4: Incidence of Treatment-Emergent Adverse Events in the Monotherapy Epilepsy Trial in Adultsa Where Rate was at Least 2% in the 400 mg/day Topiramate Group and Greater Than the Rate in the 50 mg/day Topiramate Group

Topiramate Dosage (mg/day)

Body System/ Adverse Event50400

(N=160)(N=159)

a Values represent the percentage of patients reporting a given adverse event. Patients may have reported more than one adverse event during the study and can be included in more than one adverse event categoryBody as a Whole-General DisordersAsthenia46Leg Pain23Chest Pain12Central & Peripheral Nervous System DisordersParesthesia2140Dizziness1314Hypoaesthesia45Ataxia34Hypertonia03Gastro-Intestinal System DisordersDiarrhea56Constipation14Gastritis03Dry Mouth13Gastroesophageal Reflux12Liver and Biliary System DisordersGamma-GT Increased13Metabolic and Nutritional DisordersWeight Decrease616Psychiatric DisordersSomnolence915Anorexia414Difficulty with Memory NOS510Insomnia89Depression79Difficulty with Concentration/Attention78Anxiety46Psychomotor Slowing35Mood Problems25Confusion34Cognitive Problem NOS14Libido Decreased03Reproductive Disorders, femaleVaginal Hemorrhage03Red Blood Cell DisordersAnemia12Resistance Mechanism DisordersInfection Viral68Infection23Respiratory System DisordersBronchitis34Rhinitis24Dyspnea12Skin and Appendages DisordersRash14Pruritus14Acne23Special Senses Other, DisordersTaste Perversion35Urinary System DisordersCystitis13Renal Calculus03Urinary Tract Infection12Dysuria02Micturition Frequency02

Table 5: Incidence of Treatment-Emergent Adverse Events in the Monotherapy Epilepsy Trial in Children Ages 10 up to 16 Yearsa Where Rate was at Least 5% in the 400 mg/day Topiramate Group and Greater Than the Rate in the 50 mg/day Topiramate Group

Topiramate Dosage (mg/day)b

Body System/ Adverse Event50400

(N=57)(N=57)

a Values represent the percentage of patients reporting a given adverse event. Patients may have reported more than one adverse event during the study and can be included in more than one adverse event categoryBody as a Whole-General DisordersFever09Central & Peripheral Nervous System DisordersParesthesia216Gastro-Intestinal System DisordersDiarrhea511Metabolic and Nutritional DisordersWeight Decrease721Psychiatric DisordersAnorexia1114Mood Problems211Difficulty with Concentration/Attention49Cognitive Problem NOS07Nervousness45Resistance Mechanism DisordersInfection Viral49Infection27Respiratory System DisordersUpper Respiratory Tract Infection1618Rhinitis27Bronchitis27Sinusitis25Skin and Appendages DisordersAlopecia25

Adjunctive Therapy Epilepsy

The most commonly observed adverse events associated with the use of topiramate at dosages of 200 to 400 mg/day in controlled trials in adults with partial onset seizures, primary generalized tonic-clonic seizures, or Lennox-Gastaut syndrome, that were seen at greater frequency in topiramate-treated patients and did not appear to be dose related were: somnolence, dizziness, ataxia, speech disorders and related speech problems, psychomotor slowing, abnormal vision, difficulty with memory, paresthesia and diplopia [see Table 6]. The most common dose-related adverse events at dosages of 200 to 1,000 mg/day were: fatigue, nervousness, difficulty with concentration or attention, confusion, depression, anorexia, language problems, anxiety, mood problems, and weight decrease [see Table 8].

Adverse events associated with the use of topiramate at dosages of 5 to 9 mg/kg/day in controlled trials in pediatric patients with partial onset seizures, primary generalized tonic-clonic seizures, or Lennox-Gastaut syndrome, that were seen at greater frequency in topiramate-treated patients were: fatigue, somnolence, anorexia, nervousness, difficulty with concentration/attention, difficulty with memory, aggressive reaction, and weight decrease [see Table 9].

In controlled clinical trials in adults, 11% of patients receiving topiramate 200 to 400 mg/day as adjunctive therapy discontinued due to adverse events. This rate appeared to increase at dosages above 400 mg/day. Adverse events associated with discontinuing therapy included somnolence, dizziness, anxiety, difficulty with concentration or attention, fatigue, and paresthesia and increased at dosages above 400 mg/day. None of the pediatric patients who received topiramate adjunctive therapy at 5 to 9 mg/kg/day in controlled clinical trials discontinued due to adverse events.

Approximately 28% of the 1,757 adults with epilepsy who received topiramate at dosages of 200 to 1,600 mg/day in clinical studies discontinued treatment because of adverse events; an individual patient could have reported more than one adverse event. These adverse events were: psychomotor slowing (4.0%), difficulty with memory (3.2%), fatigue (3.2%), confusion (3.1%), somnolence (3.2%), difficulty with concentration/attention (2.9%), anorexia (2.7%), depression (2.6%), dizziness (2.5%), weight decrease (2.5%), nervousness (2.3%), ataxia (2.1%), and paresthesia (2.0%). Approximately 11% of the 310 pediatric patients who received topiramate at dosages up to 30 mg/kg/day discontinued due to adverse events. Adverse events associated with discontinuing therapy included aggravated convulsions (2.3%), difficulty with concentration/attention (1.6%), language problems (1.3%), personality disorder (1.3%), and somnolence (1.3%).


Incidence in Epilepsy Controlled Clinical Trials Adjunctive TherapyPartial Onset Seizures, Primary Generalized Tonic-Clonic Seizures, and Lennox-Gastaut Syndrome

Table 6 lists treatment-emergent adverse events that occurred in at least 1% of adults treated with 200 to 400 mg/day topiramate in controlled trials that were numerically more common at this dose than in the patients treated with placebo. In general, most patients who experienced adverse events during the first eight weeks of these trials no longer experienced them by their last visit. Table 9 lists treatmentemergent adverse events that occurred in at least 1% of pediatric patients treated with 5 to 9 mg/kg topiramate in controlled trials that were numerically more common than in patients treated with placebo.

The prescriber should be aware that these data were obtained when Topiramate was added to concurrent antiepileptic drug therapy and cannot be used to predict the frequency of adverse events in the course of usual medical practice where patient characteristics and other factors may differ from those prevailing during clinical studies. Similarly, the cited frequencies cannot be directly compared with data obtained from other clinical investigations involving different treatments, uses, or investigators. Inspection of these frequencies, however, does provide the prescribing physician with a basis to estimate the relative contribution of drug and non-drug factors to the adverse event incidences in the population studied.


Other Adverse Events Observed During Double-Blind Adjunctive Therapy Epilepsy Trials

Other events that occurred in more than 1% of adults treated with 200 to 400 mg of topiramate in placebo-controlled epilepsy trials but with equal or greater frequency in the placebo group were: headache, injury, anxiety, rash, pain, convulsions aggravated, coughing, fever, diarrhea, vomiting, muscle weakness, insomnia, personality disorder, dysmenorrhea, upper respiratory tract infection, and eye pain.

Table 6: Incidence of Treatment-Emergent Adverse Events in Placebo-Controlled, Add-On Epilepsy Trials in Adultsa,b Where Rate Was >1% in Any Topiramate Group and Greater Than the Rate in Placebo-Treated Patients

Topiramate Dosage (mg/day)

Body System/ Adverse EventcPlacebo (N=291)200-400 ( N=183)600-1,000 (N=414)

a Patients in these add-on trials were receiving 1 to 2 concomitant antiepileptic drugs in addition to Topiramate or placebo. b Values represent the percentage of patients reporting a given adverse event. Patients may have reported more than one adverse event during the study and can be included in more than one adverse event category. c Adverse events reported by at least 1% of patients in the Topiramate 200-400 mg/day group and more common than in the placebo group are listed in this table.Body as a Whole- General DisordersFatigue131530Asthenia163Back Pain453Chest Pain342Influenza-Like Symptoms234Leg Pain224Hot Flushes121Allergy123Edema121Body Odor010Rigors01<1Central & Peripheral Nervous System DisordersDizziness152532Ataxia71614Speech Disorders/Related Speech Problems21311Paresthesia41119Nystagmus71011Tremor699Language Problems1610Coordination Abnormal244Hypoaesthesia121Gait Abnormal132Muscle Contractions Involuntary122Stupor021Vertigo112Gastro-Intestinal System DisordersNausea81012Dyspepsia676Abdominal Pain467Constipation243Gastroenteritis121Dry Mouth124Gingivitis<111GI Disorder<110Hearing and Vestibular DisordersHearing Decreased121Metabolic and Nutritional DisordersWeight Decrease3913Muscle-Skeletal System DisordersMyalgia122Skeletal Pain010Platelet, Bleeding, & Clotting DisordersEpistaxis121Psychiatric DisordersSomnolence122928Nervousness61619Psychomotor Slowing21321Difficulty with Memory31214Anorexia41012Confusion51114Depression5513Difficulty with Concentration/Attention2614Mood Problems249Agitation233Aggressive Reaction233Emotional Liability133Cognitive Problems133Libido Decreased12<1Apathy113Depersonalization112Reproductive Disorders, femaleBreast Pain240Amenorrhea122Menorrhagia021Menstrual Disorder121Reproductive Disorders, maleProstatic Disorder<120Resistance Mechanism DisordersInfection121Infection Viral12<1Moniliasis<110Respiratory System DisordersPharyngitis263Rhinitis676Sinusitis456Dyspnea112Skin and Appendages DisordersSkin Disorder<121Sweating Increased<11<1Rash Erythematous<11<1Special Senses Other, DisordersTaste Perversion024Urinary System DisordersHematuria12<1Urinary Tract Infection123Micturition Frequency112Urinary Incontinence<121Urine Abnormal01<1Vision DisordersVision Abnormal21310Diplopia51010White Cell and RES DisordersLeukopenia121

Incidence in Study 119Add-On TherapyAdults with Partial Onset Seizures


The incidence of adverse events (Table 7) did not differ significantly between the 2 topiramate regimens. Because the frequencies of adverse events reported in this study were markedly lower than those reported in the previous epilepsy studies, they cannot be directly compared with data obtained in other studies.

Table 7: Incidence of Treatment-Emergent Adverse Events in Study 119a,b Where Rate was2% in the Topiramate Group and Greater Than the Rate in Placebo- Treated Patients

Body System/Adverse EventcTopiramate Dosage (mg/day)

Placebo (N=92)200 (N=171)

a Patients in these add-on trials were receiving 1 to 2 concomitant antiepileptic drugs in addition to Topiramate or placebo. b Values represent the percentage of patients reporting a given adverse event. Patients may have reported more than one adverse event during the study and can be included in more than one adverse event category. c Adverse events reported by at least 2% of patients in the Topiramate 200 mg/day group and more common than in the placebo group are listed in this table.Body as a Whole-General DisordersFatigue49Chest Pain12Cardiovascular Disorders, GeneralHypertension02Central & Peripheral Nervous System DisordersParesthesia29Dizziness47Tremor23Hypoasthesia02Leg Cramps02Language Problems02Gastro-Intestinal System DisordersAbdominal Pain35Constipation04Diarrhea12Dyspepsia02Dry Mouth02Hearing and Vestibular DisordersTinnitus02Metabolic and Nutritional DisordersWeight Decrease48Psychiatric DisordersSomnolence915Anorexia79Nervousness29Difficulty with Concentration/ Attention05Insomnia34Difficulty with Memory12Aggressive Reaction02Respiratory System DisordersRhinitis04Urinary System DisordersCystitis02Vision DisordersDiplopia02Vision Abnormal02

Table 8: Incidence (%) of Dose-Related Adverse Events From Placebo-Controlled, Add-On Trials in Adults with Partial Onset Seizuresa

Topiramate Dosage (mg/day)

Adverse EventPlacebo (N=216)200 (N=45)400 (N=68)600-1,000 (N=414)

a Dose-response studies were not conducted for other adult indications or for pediatric indications.Fatigue13111230Nervousness7131819Difficulty with Concentration/Attention17914Confusion491014Depression69713Anorexia44612Language Problems<12910Anxiety62310Mood Problems2069Weight Decrease34913

Table 9: Incidence (%) of Treatment-Emergent Adverse Events in Placebo- Controlled, Add-On Epilepsy Trials in Pediatric Patients Ages 2-16 Years a,b (Events that occurred in at Least 1% of Topiramate-Treated Patients and Occurred More Frequently in Topiramate-Treated Than Placebo-Treated Patients)

Body System/Adverse EventPlacebo (N=101)Topiramate (N=98)

a Patients in these add-on trials were receiving 1 to 2 concomitant antiepileptic drugs in addition to Topiramate or placebo. b Values represent the percentage of patients reporting a given adverse event. Patients may have reported more than one adverse event during the study and can be included in more than one adverse event category.Body as a Whole-General DisordersFatigue516Injury1314Allergic Reaction12Back Pain01Pallor01Cardiovascular Disorders, GeneralHypertension01Central & Peripheral Nervous System DisordersGait Abnormal58Ataxia26Hyperkinesia45Dizziness24Speech Disorders/Related Speech Problems24Hyporeflexia02Convulsions Gran Mal01Fecal Incontinence01Paresthesia01Gastro-Intestinal System DisordersNausea56Saliva Increased46Constipation45Gastroenteritis23Dysphagia01Flatulence01Gastroesophageal Reflux01Glossitis01Gum Hyperplasia01Heart Rate and Rhythm DisordersBradycardia01Metabolic and Nutritional DisordersWeight Decrease19Thirst12Hypoglycemia01Weight Increase01Platelet, Bleeding, & Clotting DisordersPurpura48Epistaxis14Hematoma01Prothrombin Increased01Thrombocyotopenia01Psychiatric DisordersSomnolence1626Anorexia1524Nervousness714Personality Disorder (Behavior Problems)911Difficulty with Concentration/Attention210Aggressive Reaction49Insomnia78Difficulty with Memory NOS05Confusion34Psychomotor Slowing23Appetite Increased01Neurosis01Reproductive Disorders, femaleLeukorrhoea02Resistance Mechanism DisordersInfection Viral37Respiratory System DisordersPneumonia15Respiratory Disorder01Skin and Appendages DisordersSkin Disorder23Alopecia12Dermatitis02Hypertrichosis12Rash Erythematous02Eczema01Seborrhoea01Skin Discoloration01Urinary System DisordersUrinary Incontinence24Nocturia01Vision DisordersEye Abnormality12Vision Abnormal12Diplopia01Lacrimation Abnormal01Myopia01White Cell and RES DisordersLeukopenia02

Other Adverse Events Observed During All Epilepsy Clinical Trials

Topiramate has been administered to 2,246 adults and 427 pediatric patients with epilepsy during all clinical studies, only some of which were placebo controlled. During these studies, all adverse events were recorded by the clinical investigators using terminology of their own choosing. To provide a meaningful estimate of the proportion of individuals having adverse events, similar types of events were grouped into a smaller number of standardized categories using modified WHOART dictionary terminology. The frequencies presented represent the proportion of patients who experienced an event of the type cited on at least one occasion while receiving topiramate. Reported events are included except those already listed in the previous tables or text, those too general to be informative, and those not reasonably associated with the use of the drug.

Events are classified within body system categories and enumerated in order of decreasing frequency using the following definitions: frequent occurring in at least 1/100 patients; infrequent occurring in 1/100 to 1/1000 patients; rare occurring in fewer than 1/1000 patients.

Autonomic Nervous System Disorders:

Infrequent: vasodilation.

Body as a Whole:

Frequent: syncope. Infrequent: abdomen enlarged. Rare: alcohol intolerance.

Cardiovascular Disorders, General:

Infrequent: hypotension, postural hypotension, angina pectoris.

Central & Peripheral Nervous System Disorders:

Infrequent: neuropathy, apraxia, hyperaesthesia, dyskinesia, dysphonia, scotoma, ptosis, dystonia, visual field defect, encephalopathy, EEG abnormal. Rare: upper motor neuron lesion, cerebellar syndrome, tongue paralysis.

Gastrointestinal System Disorders:

Infrequent: hemorrhoids, stomatitis, melena, gastritis, esophagitis. Rare: tongue edema.

Heart Rate and Rhythm Disorders:

Infrequent: AV block.

Liver and Biliary System Disorders:

Infrequent: SGPT increased, SGOT increased.

Metabolic and Nutritional Disorders:

Infrequent: dehydration, hypokalemia, alkaline phosphatase increased, hypocalcemia, hyperlipemia, hyperglycemia, xerophthalmia, diabetes mellitus. Rare: hyperchloremia, hypernatremia, hyponatremia, hypocholesterolemia, hypophosphatemia, creatinine increased.

Musculoskeletal System Disorders:

Frequent: Arthralgia. Infrequent: arthrosis.

Neoplasms:

Infrequent: thrombocythemia. Rare: polycythemia.

Platelet, Bleeding, and Clotting Disorders:

Infrequent: gingival bleeding, pulmonary embolism.

Psychiatric Disorders:

Frequent: impotence, hallucination, psychosis, suicide attempt. Infrequent: euphoria, paranoid reaction, delusion, paranoia, delirium, abnormal dreaming. Rare: libido increased, manic reaction.

Red Blood Cell Disorders:

Frequent: anemia. Rare: marrow depression, pancytopenia.

Reproductive Disorders, Male:

Infrequent: ejaculation disorder, breast discharge.

Skin and Appendages Disorders:

Infrequent: urticaria, photosensitivity reaction, abnormal hair texture. Rare: chloasma.

Special Senses Other, Disorders:

Infrequent: taste loss, parosmia.

Urinary System Disorders:

Infrequent: urinary retention, face edema, renal pain, albuminuria, polyuria, oliguria.

Vascular (Extracardiac) Disorders:

Infrequent: flushing, deep vein thrombosis, phlebitis. Rare: vasospasm.

Vision Disorders:

Frequent: conjunctivitis. Infrequent: abnormal accommodation, photophobia, strabismus. Rare: mydriasis, iritis.

White Cell and Reticuloendothelial System Disorders:

Infrequent: lymphadenopathy, eosinophilia, lymphopenia, granulocytopenia. Rare: lymphocytosis.

Postmarketing and Other Experience


In addition to the adverse experiences reported during clinical testing of Topiramate, the following adverse experiences have been reported worldwide in patients receiving topiramate post-approval. These adverse experiences have not been listed above and data are insufficient to support an estimate of their incidence or to establish causation. The listing is alphabetized: bullous skin reactions (including erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis), hepatic failure (including fatalities), hepatitis, pancreatitis, pemphigus, and renal tubular acidosis.

DRUG ABUSE AND DEPENDENCE

The abuse and dependence potential of Topiramate has not been evaluated in human studies

OVERDOSAGE

DOSAGE & ADMINISTRATION

Epilepsy

In the controlled add-on trials, no correlation has been demonstrated between trough plasma concentrations of topiramate and clinical efficacy. No evidence of tolerance has been demonstrated in humans. Doses above 400 mg/day (600, 800, or 1000 mg/day) have not been shown to improve responses in dose-response studies in adults with partial onset seizures.

It is not necessary to monitor topiramate plasma concentrations to optimize Topiramate therapy. On occasion, the addition of Topiramate to phenytoin may require an adjustment of the dose of phenytoin to achieve optimal clinical outcome. Addition or withdrawal of phenytoin and/or carbamazepine during adjunctive therapy with Topiramate may require adjustment of the dose of Topiramate. Because of the bitter taste, tablets should not be broken.

Topiramate can be taken without regard to meals.

Monotherapy Use


Morning DoseEvening DoseWeek 125 mg25 mgWeek 250 mg50 mgWeek 375 mg75 mgWeek 4100 mg100 mgWeek 5150 mg150 mgWeek 6200 mg200 mg

Adjunctive Therapy Use

Adults (17 Years of Age and Over) - Partial Seizures, Primary Generalized Tonic- Clonic Seizures, or Lennox-Gastaut Syndrome

The recommended total daily dose of Topiramate as adjunctive therapy in adults with partial seizures is 200-400 mg/day in two divided doses, and 400 mg/day in two divided doses as adjunctive treatment in adults with primary generalized tonic-clonic seizures. It is recommended that therapy be initiated at 25-50 mg/day followed by titration to an effective dose in increments of 25-50 mg/week. Titrating in increments of 25 mg/week may delay the time to reach an effective dose. Daily doses above 1,600 mg have not been studied.

In the study of primary generalized tonic-clonic seizures the initial titration rate was slower than in previous studies; the assigned dose was reached at the end of 8 weeks (see

CLINICAL STUDIES, Adjunctive Therapy Controlled Trials in Patients With Primary Generalized Tonic-Clonic Seizures

).

Pediatric Patients (Ages 2 - 16 Years) - Partial Seizures, Primary Generalized Tonic-Clonic Seizures, or Lennox-Gastaut Syndrome

The recommended total daily dose of Topiramate as adjunctive therapy for patients with partial seizures, primary generalized tonic-clonic seizures, or seizures associated with Lennox-Gastaut Syndrome is approximately 5 to 9 mg/kg/day in two divided doses. Titration should begin at 25 mg (or less, based on a range of 1 to 3 mg/kg/day) nightly for the first week. The dosage should then be increased at 1- or 2-week intervals by increments of 1 to 3 mg/kg/day (administered in two divided doses), to achieve optimal clinical response. Dose titration should be guided by clinical outcome.

In the study of primary generalized tonic-clonic seizures the initial titration rate was slower than in previous studies; the assigned dose of 6 mg/kg/day was reached at the end of 8 weeks (see

CLINICAL STUDIES, Adjunctive Therapy Controlled Trial in Patients With Primary Generalized Tonic-Clonic Seizures

).


Patients with Renal Impairment

In renally impaired subjects (creatinine clearance less than 70 mL/min/1.73m2), one half of the usual adult dose is recommended. Such patients will require a longer time to reach steady-state at each dose.

Geriatric Patients (Ages 65 Years and Over)

Dosage adjustment may be indicated in the elderly patient when impaired renal function (creatinine clearance ratemL/min/1.73 m2) is evident (see

DOSAGE AND ADMINISTRATION: Patients with Renal Impairment

and

CLINICAL PHARMACOLOGY: Special Populations: Age, Gender, and Race

).



Patients Undergoing Hemodialysis:

Topiramate is cleared by hemodialysis at a rate that is 4 to 6 times greater than a normal individual. Accordingly, a prolonged period of dialysis may cause topiramate concentration to fall below that required to maintain an anti-seizure effect. To avoid rapid drops in topiramate plasma concentration during hemodialysis, a supplemental dose of topiramate may be required. The actual adjustment should take into account 1) the duration of dialysis period, 2) the clearance rate of the dialysis system being used, and 3) the effective renal clearance of topiramate in the patient being dialyzed.

Patients with Hepatic Disease

In hepatically impaired patients topiramate plasma concentrations may be increased. The mechanism is not well understood.

HOW SUPPLIED

Topiramate Tablets. USP 25 mg are white to off white, round, biconvex, film coated tablets debossed with1031'on one side and25'on other side. Topiramate Tablets 25 mg are supplied as follows:

Package NDC Number



Bottles of 30NDC 13668-031-30Bottles of 60NDC 13668-031-60Bottles of 100NDC 13668-031-01Bottles of 500NDC 13668-031-05Bottles of 9000NDC 13668-031-53100 unit dose tabletsNDC 13668-031-74Topiramate Tablets, USP 50 mg are yellow colored, round, biconvex, film coated tablets debossed with1032'on one side and50'on other side. Topiramate Tablets 50 mg are supplied as follows:

Package NDC Number



Bottles of 30NDC 13668-032-30Bottles of 60NDC 13668-032-60Bottles of 100NDC 13668-032-01Bottles of 500NDC 13668-032-05Bottles of 6000NDC 13668-032-42100 unit dose tabletsNDC 13668-032-74Topiramate Tablets, USP 100 mg are light yellow colored, round, biconvex, film coated tablets debossed with1033'on one side and100'on other side. Topiramate Tablets 100 mg are supplied as follows:

Package NDC Number



Bottles of 60NDC 13668-033-60Bottles of 100NDC 13668-033-01Bottles of 500NDC 13668-033-05Bottles of 2500NDC 13668-033-3190 unit dose tabletsNDC 13668-033-64Topiramate Tablets, USP 200 mg are peach colored, round, biconvex, film coated tablets debossed with1034'on one side and200'on other side. Topiramate Tablets 200 mg are supplied as follows:

Package NDC Number



Bottles of 60NDC 13668-034-60Bottles of 100NDC 13668-034-01Bottles of 500NDC 13668-034-05Bottles of 1500NDC 13668-034-1580 unit dose tabletsNDC 13668-034-77

STORAGE AND HANDLING

Topiramate tablets should be stored in tightly-closed containers at 20- 25(68- 77- 30(59- 86[see USP Controlled Room Temperature]. PROTECT FROM MOISTURE.

INFORMATION FOR PATIENTS

SPL MEDGUIDE

PACKAGE LABEL.PRINCIPAL DISPLAY PANEL SECTION

DRUG: Topiramate

GENERIC: Topiramate

DOSAGE: TABLET

ADMINSTRATION: ORAL

NDC: 49349-142-28

STRENGTH:50 mg

COLOR: yellow

SHAPE: ROUND

SCORE: No score

SIZE: 6 mm

IMPRINT: 300

QTY: 300



MM3

TOPIRAMATE 
topiramate tablet
Product Information
Product TypeHUMAN PRESCRIPTION DRUGItem Code (Source)NDC:49349-142(NDC:13668-032)
Route of AdministrationORAL
Active Ingredient/Active Moiety
Ingredient NameBasis of StrengthStrength
TOPIRAMATE (UNII: 0H73WJJ391) (TOPIRAMATE - UNII:0H73WJJ391) TOPIRAMATE50 mg
Inactive Ingredients
Ingredient NameStrength
CELLULOSE, MICROCRYSTALLINE (UNII: OP1R32D61U)  
SILICON DIOXIDE (UNII: ETJ7Z6XBU4)  
FERRIC OXIDE YELLOW (UNII: EX438O2MRT)  
LACTOSE MONOHYDRATE (UNII: EWQ57Q8I5X)  
HYPROMELLOSES (UNII: 3NXW29V3WO)  
MAGNESIUM STEARATE (UNII: 70097M6I30)  
POLYETHYLENE GLYCOL 400 (UNII: B697894SGQ)  
SODIUM STARCH GLYCOLATE TYPE A POTATO (UNII: 5856J3G2A2)  
TALC (UNII: 7SEV7J4R1U)  
TITANIUM DIOXIDE (UNII: 15FIX9V2JP)  
Product Characteristics
ColoryellowScoreno score
ShapeROUND (TABLET) Size6mm
FlavorImprint Code 1032;50
Contains    
Packaging
#Item CodePackage DescriptionMarketing Start DateMarketing End Date
1NDC:49349-142-28300 in 1 CANISTER; Type 0: Not a Combination Product09/14/201109/15/2011
Marketing Information
Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
ANDAANDA07915309/14/201109/15/2011
Labeler - REMEDYREPACK INC. (829572556)

Revised: 4/2016
 
REMEDYREPACK INC.