CIPROFLOXACIN HYDROCHLORIDE- ciprofloxacin hydrochloride tablet 
REMEDYREPACK INC.

----------

BOXED WARNING

WARNING:

Fluoroquinolones, including CIPROFLOXACIN TABLETS USP, 250 mg, 500 mg and 750 mg, are

associated with an increased risk of tendinitis and tendon rupture in all ages. This risk is further

increased in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and

in patients with kidney, heart or lung transplants (See

WARNINGS

).

DESCRIPTION

Ciprofloxacin Hydrochloride Tablets USP, 250 mg, 500 mg and 750 mg are synthetic broad spectrum antimicrobial agents for oral administration. Ciprofloxacin hydrochloride, USP, a fluoroquinolone, is the monohydrochloride monohydrate salt of 1-cyclopropyl-6-fluoro-1, 4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid. It is a faintly yellowish to light yellow crystalline substance with a molecular weight of 385.8. Its empirical formula is C17H18FN3O3HClH2O and its chemical structure is as follows:

MM1

Ciprofloxacin is 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid. Its empirical formula is C17H18FN3O3 and its molecular weight is 331.4. It is a faintly yellowish to light yellow crystalline substance and its chemical structure is as follows:

MM2

Ciprofloxacin Tablets USP are film-coated tablets and are available in 250 mg, 500 mg and 750 mg (ciprofloxacin equivalent) strengths. Ciprofloxacin Tablets are white to slightly yellowish. The inactive ingredients are pregelatinized starch, microcrystalline cellulose, colloidal silicon dioxide, crospovidone, magnesium stearate, hypromellose, titanium dioxide, polyethylene glycol and purified water.

CLINICAL PHARMACOLOGY

Absorption:


Ciprofloxacin given as an oral tablet is rapidly and well absorbed from the gastrointestinal tract after oral administration. The absolute bioavailability is approximately 70% with no substantial loss by first pass metabolism. Ciprofloxacin maximum serum concentrations and area under the curve are shown in the chart for the 250 mg to 1000 mg dose range.

Dose (mg)Maximum Serum Concentrations (Area Under Curve (AUC) (hr/mL)

250 500 750 10001.2 2.4 4.3 5.44.8 11.6 20.2 30.8Maximum serum concentrations are attained 1 to 2 hours after oral dosing. Mean concentrations 12 hours after dosing with 250, 500, or 750 mg are 0.1, 0.2, and 0.4respectively. The serum elimination half-life in subjects with normal renal function is approximately 4 hours. Serum concentrations increase proportionately with doses up to 1000 mg.

A 500 mg oral dose given every 12 hours has been shown to produce an area under the serum concentration time curve (AUC) equivalent to that produced by an intravenous infusion of 400 mg ciprofloxacin given over 60 minutes every 12 hours. A 750 mg oral dose given every 12 hours has been shown to produce an AUC at steady-state equivalent to that produced by an intravenous infusion of 400 mg given over 60 minutes every 8 hours. A 750 mg oral dose results in a Cmax similar to that observed with a 400 mg I.V. dose. A 250 mg oral dose given every 12 hours produces an AUC equivalent to that produced by an infusion of 200 mg ciprofloxacin given every 12 hours.

Steady-state Pharmacokinetic Parameters Following Multiple Oral and I.V. Doses

Parameters AUC (hr/mL) Cmax (500 mg q12h, P.O. 13.7a 2.97400 mg q12h, I.V. 12.7a 4.56750 mg q12h, P.O. 31.6b 3.59400 mg q8h, I.V. 32.9c 4.07a AUC 0-12h

bAUC 24h=AUC0-12h x 2

cAUC 24h=AUC0-8h x 3

Distribution:

The binding of ciprofloxacin to serum proteins is 20 to 40% which is not likely to be high enough to cause significant protein binding interactions with other drugs.

Metabolism:

Four metabolites have been identified in human urine which together account for approximately 15% of an oral dose. The metabolites have antimicrobial activity, but are less active than unchanged ciprofloxacin. Ciprofloxacin is an inhibitor of human cytochrome P450 1A2 (CYP1A2) mediated metabolism. Coadministration of ciprofloxacin with other drugs primarily metabolized by CYP1A2 results in increased plasma concentrations of these drugs and could lead to clinically significant adverse events of the coadministered drug (see

CONTRAINDICATIONS WARNINGS PRECAUTIONS: Drug Interactions).

Excretion:

The serum elimination half-life in subjects with normal renal function is approximately 4 hours. Approximately 40 to 50% of an orally administered dose is excreted in the urine as unchanged drug. After a 250 mg oral dose, urine concentrations of ciprofloxacin usually exceed 200during the first two hours and are approximately 30at 8 to 12 hours after dosing. The urinary excretion of ciprofloxacin is virtually complete within 24 hours after dosing. The renal clearance of ciprofloxacin, which is approximately 300 mL/minute, exceeds the normal glomerular filtration rate of 120 mL/minute. Thus, active tubular secretion would seem to play a significant role in its elimination. Co-administration of probenecid with ciprofloxacin results in about a 50% reduction in the ciprofloxacin renal clearance and a 50% increase in its concentration in the systemic circulation. Although bile concentrations of ciprofloxacin are several fold higher than serum concentrations after oral dosing, only a small amount of the dose administered is recovered from the bile as unchanged drug. An additional 1 to 2% of the dose is recovered from the bile in the form of metabolites. Approximately 20 to 35% of an oral dose is recovered from the feces within 5 days after dosing. This may arise from either biliary clearance or transintestinal elimination.

Drug-drug Interactions:

When Ciprofloxacin Tablets USP, 250 mg, 500 mg and 750 mg is given concomitantly with food, there is a delay in the absorption of the drug, resulting in peak concentrations that occur closer to 2 hours after dosing rather than 1 hour. The overall absorption of Ciprofloxacin Tablets USP, 250 mg, 500 mg and 750 mg however, is not substantially affected. Concurrent administration of antacids containing magnesium hydroxide or aluminum hydroxide may reduce the bioavailability of ciprofloxacin by as much as 90%. (See PRECAUTIONS.)

The serum concentrations of ciprofloxacin and metronidazole were not altered when these two drugs were given concomitantly.

Concomitant administration with tizanidine is contraindicated. (See CONTRAINDICATIONS.)

Concomitant administration of ciprofloxacin with theophylline decreases the clearance of theophylline resulting in elevated serum theophylline levels and increased risk of a patient developing CNS or other adverse reactions. Ciprofloxacin also decreases caffeine clearance and inhibits the formation of paraxanthine after caffeine administration. (See WARNINGS: PRECAUTIONS.)

Special Populations:

Pharmacokinetic studies of the oral (single dose) and intravenous (single and multiple dose) forms of ciprofloxacin indicate that plasma concentrations of ciprofloxacin are higher in elderly subjects (> 65 years) as compared to young adults. Although the Cmax is increased 16- 40%, the increase in mean AUC is approximately 30%, and can be at least partially attributed to decreased renal clearance in the elderly. Elimination half-life is only slightly (~20%) prolonged in the elderly. These differences are not considered clinically significant. (See PRECAUTIONS: Geriatric Use.)

In patients with reduced renal function, the half-life of ciprofloxacin is slightly prolonged. Dosage adjustments may be required. (See DOSAGE AND ADMINISTRATION.)

In preliminary studies in patients with stable chronic liver cirrhosis, no significant changes in ciprofloxacin pharmacokinetics have been observed. The kinetics of ciprofloxacin in patients with acute hepatic insufficiency, however, have not been fully elucidated.

MICROBIOLOGY


Ciprofloxacin is slightly less active when tested at acidic pH. The inoculum size has little effect when tested in vitro. The minimal bactericidal concentration (MBC) generally does not exceed the minimal inhibitory concentration (MIC) by more than a factor of 2.

Ciprofloxacin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections as described in the

INDICATIONS AND USAGE

section of the package insert for Ciprofloxacin Hydrochloride Tablets USP, 250mg, 500mg and 750mg.

Aerobic gram-positive microorganisms


Enterococcus faecalis (Many strains are only moderately susceptible.)

Staphylococcus aureus (methicillin-susceptible strains only)

Staphylococcus epidermidis (methicillin-susceptible strains only)

Staphylococcus saprophyticus

Streptococcus pneumoniae (penicillin-susceptible strains only)

Streptococcus pyogenes

Aerobic gram-negative microorganisms

Campylobacter jejuni Proteus mirabilis

Citrobacter diversus Proteus vulgaris

Citrobacter freundii Providencia rettgeri

Enterobacter cloacae Providencia stuartii

Escherichia coli Pseudomonas aeruginosa

Haemophilus influenzae Salmonella typhi

Haemophilus parainfluenzae Serratia marcescens

Klebsiella pneumoniae Shigella boydii

Moraxella catarrhalis Shigella dysenteriae

Morganella morganii Shigella flexneri

Neisseria gonorrhoeae Shigella sonnei

Ciprofloxacin has been shown to be active against Bacillus anthracis both in vitro and by use of serum levels as a surrogate marker (see

INDICATIONS AND USAGE

and

INHALATIONAL ANTHRAXADDITIONAL INFORMATION

).

The following in vitro data are available, but their clinical significance is unknown
Ciprofloxacin exhibits in vitro minimum inhibitory concentrations (MICs) of 1or less against most (

Aerobic gram-positive microorganisms


Staphylococcus haemolyticus

Staphylococcus hominis

Streptococcus pneumoniae (penicillin-resistant strains only)

Aerobic gram-negative microorganisms

Acinetobacter Iwoffii Pasteurella multocida

Aeromonas hydrophila Salmonella enteritidis

Edwardsiella tarda Vibrio cholerae

Enterobacter aerogenes Vibrio parahaemolyticus

Klebsiella oxytoca Vibrio vulnificus

Legionella pneumophila Yersinia enterocolitica

Most strains of Burkholderia cepacia and some strains of Stenotrophomonas maltophilia are resistant to ciprofloxacin as are most anaerobic bacteria, including Bacteroides fragilis and Clostridium difficile.

Susceptibility Tests

Dilution Techniques:

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure. Standardized procedures are based on a dilution method1 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of ciprofloxacin powder. The MIC values should be interpreted according to the following criteria:

For testing aerobic microorganisms other than Haemophilus influenzae , Haemophilus parainfluenzae, and Neisseria gonorrhoeaea:

MIC (Interpretation

1Susceptible (S)2Intermediate (I)4Resistant (R)

a These interpretive standards are applicable only to broth microdilution susceptibility tests with streptococci using cation-adjusted Mueller-Hinton broth with 2-5% lysed horse blood.

For testing Haemophilus influenzae and Haemophilus parainfluenzaeb:

MIC (Interpretation

1Susceptible (S)

b This interpretive standard is applicable only to broth microdilution susceptibility tests with Haemophilus influenzae and Haemophilus parainfluenzae using Haemophilus Test Medium.1

The current absence of data on resistant strains precludes defining any results other thanSusceptible. Strains yielding MIC results suggestive of anonsusceptiblecategory should be submitted to a reference laboratory for further testing.

For testing Neisseria gonorrhoeaec:

MIC (Interpretation

0.06Susceptible (S)0.120.5Intermediate (I)1Resistant (R)

c This interpretive standard is applicable only to agar dilution test with GC agar base and 1% defined growth supplement.

A report ofSusceptibleindicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report ofIntermediateindicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone, which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report ofResistant

Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standard ciprofloxacin powder should provide the following MIC values:

OrganismMIC (

E. faecalisATCC 292120.252E. coliATCC 259220.0040.015H. influenzaeaATCC 492470.0040.03P. aeruginosaATCC 278530.251.0S. aureusATCC 292130.120.5C. jejunibATCC 335600.060.25 and 0.030.12N. gonorrhoeaecATCC 492260.0010.008

a This quality control range is applicable to only H. influenzae ATCC 49247 tested by a broth microdilution procedure using Haemophilus Test Medium (HTM)1.

b C. jejuni ATCC 33560 tested by broth microdilution procedure using cation adjusted Mueller Hinton broth with 2.5-5% lysed horse blood in a microaerophilic environment at 36-37for 48 hours and for 42at 24 hours2, respectively.

c N. gonorrhoeae ATCC 49226 tested by agar dilution procedure using GC agar and 1% defined growth supplement in a 5% CO2 environment at 35-37for 20-24 hours3.

Diffusion Techniques:

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure3 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 5-ciprofloxacin to test the susceptibility of microorganisms to ciprofloxacin.

Reports from the laboratory providing results of the standard single-disk susceptibility test with a 5-ciprofloxacin disk should be interpreted according to the following criteria:

For testing Enterobacteriaceae, Enterococcus faecalis, methicillin-susceptible Staphylococcus species, penicillin-susceptible Streptococcus pneumoniae, Streptococcus pyogenes, and Pseudomonas aeruginosaa:

Zone Diameter (mm)Interpretation

21Susceptible (S)1620Intermediate (I)15Resistant (R)

a These zone diameter standards are applicable only to tests performed for streptococci using Mueller-Hinton agar supplemented with 5% sheep blood incubated in 5% CO2.

For testing Haemophilus influenzae and Haemophilus parainfluenzaeb:

Zone Diameter (mm)Interpretation

21Susceptible (S)

b This zone diameter standard is applicable only to tests with Haemophilus influenzae and Haemophilus parainfluenzae using Haemophilus Test Medium (HTM).3

The current absence of data on resistant strains precludes defining any results other thanSusceptible. Strains yielding zone diameter results suggestive of anonsusceptiblecategory should be submitted to a reference laboratory for further testing.

For testing Neisseria gonorrhoeaec:

Zone Diameter (mm)Interpretation

Susceptible (S)2840Intermediate (I)27Resistant (R)

c This zone diameter standard is applicable only to disk diffusion tests with GC agar base and 1% defined growth supplement.

Interpretation should be as stated above for results using dilution techniques. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for ciprofloxacin.

As with standardized dilution techniques, diffusion methods require the use of laboratory control microorganisms that are used to control the technical aspects of the laboratory procedures. For the diffusion technique, the 5-ciprofloxacin disk should provide the following zone diameters in these laboratory test quality control strains:

OrganismZone Diameter (mm)

E. coliATCC 2592230-40H. influenzaeaATCC 4924734-42N. gonorrhoeaebATCC 4922648-58P. aeruginosaATCC 2785325-33S. aureusATCC 2592322-30

a These quality control limits are applicable to only H. influenzae ATCC 49247 testing using Haemophilus Test Medium (HTM).3

b These quality control limits are applicable only to tests conducted with N. gonorrhoeae ATCC 49226 performed by disk diffusion using GC agar base and 1% defined growth supplement.

INDICATIONS & USAGE

Ciprofloxacin Tablets USP, 250 mg, 500 mg and 750 mg is indicated for the treatment of infections caused by susceptible strains of the designated microorganisms in the conditions and patient populations listed below. Please see

DOSAGE AND ADMINISTRATION

for specific recommendations.

Adult Patients:

Urinary Tract Infections

caused by Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Serratia marcescens, Proteus mirabilis, Providencia rettgeri, Morganella morganii, Citrobacter diversus, Citrobacter freundii, Pseudomonas aeruginosa, methicillin-susceptible Staphylococcus epidermidis, Staphylococcus saprophyticus, or Enterococcus faecalis.

Acute Uncomplicated Cystitis in females

caused by Escherichia coli or Staphylococcus saprophyticus.

Chronic Bacterial Prostatitis

caused by Escherichia coli or Proteus mirabilis.

Lower Respiratory Tract Infections

caused by Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Proteus mirabilis, Pseudomonas aeruginosa, Haemophilus influenzae, Haemophilus parainfluenzae, or penicillin-susceptible Streptococcus pneumoniae. Also, Moraxella catarrhalis for the treatment of acute exacerbations of chronic bronchitis.

NOTE: Although effective in clinical trials, ciprofloxacin is not a drug of first choice in the treatment of presumed or confirmed pneumonia secondary to Streptococcus pneumoniae.

Acute Sinusitis

caused by Haemophilus influenzae, penicillin-susceptible Streptococcus pneumoniae, or Moraxella catarrhalis.

Skin and Skin Structure Infections

caused by Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Proteus mirabilis, Proteus vulgaris, Providencia stuartii, Morganella morganii, Citrobacter freundii, Pseudomonas aeruginosa, methicillin-susceptible Staphylococcus aureus, methicillin-susceptible Staphylococcus epidermidis, or Streptococcus pyogenes.

Bone and Joint Infections

caused by Enterobacter cloacae, Serratia marcescens, or Pseudomonas aeruginosa.

Complicated Intra-Abdominal Infections

(used in combination with metronidazole) caused by Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, or Bacteroides fragilis.


Infectious Diarrhea

caused by Escherichia coli (enterotoxigenic strains), Campylobacter jejuni, Shigella boydiiShigella dysenteriae, Shigella flexneri or Shigella sonneiwhen antibacterial therapy is indicated.

Typhoid Fever

(Enteric Fever)

caused by Salmonella typhi.

NOTE: The efficacy of ciprofloxacin in the eradication of the chronic typhoid carrier state has not been demonstrated.

Uncomplicated cervical and urethral gonorrhea

due to Neisseria gonorrhoeae.

Pediatric patients (1 to 17 years of age):

Complicated Urinary Tract Infections and Pyelonephritis

due to Escherichia coli.

NOTE: Although effective in clinical trials, ciprofloxacin is not a drug of first choice in the pediatric population due to an increased incidence of adverse events compared to controls, including events related to joints and/or surrounding tissues. (See

WARNINGS

,

PRECAUTIONS, Pediatric Use

,

ADVERSE REACTIONS

and

CLINICAL STUDIES

.)

Ciprofloxacin, like other fluoroquinolones, is associated with arthropathy and histopathological changes in weight-bearing joints of juvenile animals. (See

ANIMAL PHARMACOLOGY

.)

Adult and Pediatric Patients:

Inhalational anthrax

(post-exposure): To reduce the incidence or progression of disease following exposure to aerosolized Bacillus anthracis.

Ciprofloxacin serum concentrations achieved in humans served as a surrogate endpoint reasonably likely to predict clinical benefit and provided the initial basis for approval of this indication.5 Supportive clinical information for ciprofloxacin for anthrax post-exposure prophylaxis was obtained during the anthrax bioterror attacks of October 2001. (See also,

INHALATIONAL ANTHRAXADDITIONAL INFORMATION

).

treatment of infections due to this organism in this organ system demonstrated a clinically significant outcome, efficacy was studied in fewer than 10 patients.

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Ciprofloxacin Tablets USP, 250 mg, 500 mg and 750 mg and other antibacterial drugs, Ciprofloxacin Tablets USP, 250 mg, 500 mg and 750 mg should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

CONTRAINDICATIONS

Ciprofloxacin is contraindicated in persons with a history of hypersensitivity to ciprofloxacin, any member of the quinolone class of antimicrobial agents, or any of the product components.

Concomitant administration with tizanidine is contraindicated. (See

PRECAUTIONS: Drug Interactions

.)

WARNINGS

PRECAUTIONS

General:


Crystals of ciprofloxacin have been observed rarely in the urine of human subjects but more frequently in the urine of laboratory animals, which is usually alkaline. (See

ANIMAL PHARMACOLOGY

.) Crystalluria related to ciprofloxacin has been reported only rarely in humans because human urine is usually acidic. Alkalinity of the urine should be avoided in patients receiving ciprofloxacin. Patients should be well hydrated to prevent the formation of highly concentrated urine.

Central Nervous System:


Quinolones, including ciprofloxacin, may also cause central nervous system (CNS) events, including: nervousness, agitation, insomnia, anxiety, nightmares or paranoia. (See

WARNINGS

,

Information for Patients

, and

Drug Interactions

.)

Renal Impairment:


Alteration of the dosage regimen is necessary for patients with impairment of renal function. (See

DOSAGE AND ADMINISTRATION

.)

Photosensitivity/Phototoxicity:


Moderate to severe photosensitivity/phototoxicity reactions, the latter of which may manifest as exaggerated sunburn reactions (e.g., burning, erythema, exudation, vesicles, blistering, edema) involving areas exposed to light (typically the face,Varea of the neck, extensor surfaces of the forearms, dorsa of the hands), can be associated with the use of quinolones after sun or UV light exposure. Therefore, excessive exposure to these sources of light should be avoided. Drug therapy should be discontinued if phototoxicity occurs (See

ADVERSE REACTIONS/Post-Marketing Adverse Events

).

As with any potent drug, periodic assessment of organ system functions, including renal, hepatic, and hematopoietic function, is advisable during prolonged therapy.

Prescribing Ciprofloxacin Tablets USP, 250 mg, 500 mg and 750 mg in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

INFORMATION FOR PATIENTS

Patients should be advised:

    • that antibacterial drugs including Ciprofloxacin Tablets USP, 250 mg, 500 mg and 750 mg should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When Ciprofloxacin Tablets USP, 250 mg, 500 mg and 750 mg is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by Ciprofloxacin Tablets USP, 250 mg, 500 mg and 750 mg or other antibacterial drugs in the future.
      • that ciprofloxacin may be taken with or without meals and to drink fluids liberally. As with other quinolones, concurrent administration of ciprofloxacin with magnesium/aluminum antacids, or sucralfate, Videx
        • that ciprofloxacin may be associated with hypersensitivity reactions, even following a single dose, and to discontinue the drug at the first sign of a skin rash or other allergic reaction.
          • that photosensitivity/phototoxicity has been reported in patients receiving quinolones. Patients should minimize or avoid exposure to natural or artificial sunlight (tanning beds or UVA/B treatment) while taking quinolones. If patients need to be outdoors while using quinolones, they should wear loose-fitting clothes that protect skin from sun exposure and discuss other sun protection measures with their physician. If a sunburn-like reaction or skin eruption occurs, patients should contact their physician.
            • that peripheral neuropathies have been associated with ciprofloxacin use. If symptoms of peripheral neuropathy including pain, burning, tingling, numbness and/or weakness develop, they should discontinue treatment and contact their physicians.
              • that ciprofloxacin may cause dizziness and lightheadedness; therefore, patients should know how they react to this drug before they operate an automobile or machinery or engage in activities requiring mental alertness or coordination.
                • that ciprofloxacin increases the effects of tizanidine (ZanaflexPatients should not use ciprofloxacin if they are already taking tizanidine.
                  • that ciprofloxacin may increase the effects of theophylline and caffeine. There is a possibility of caffeine accumulation when products containing caffeine are consumed while taking quinolones.
                    • that convulsions have been reported in patients receiving quinolones, including ciprofloxacin, and to notify their physician before taking this drug if there is a history of this condition.
                      • that ciprofloxacin has been associated with an increased rate of adverse events involving joints and surrounding tissue structures (like tendons) in pediatric patients (less than 18 years of age). Parents should inform their child's physician if the child has a history of joint-related problems before taking this drug. Parents of pediatric patients should also notify their child's physician of any joint-related problems that occur during or following ciprofloxacin therapy. (See WARNINGS, PRECAUTIONS, Pediatric Useand ADVERSE REACTIONS.)
                        • that diarrhea is a common problem caused by antibiotics which usually ends when the antibiotic is discontinued. Sometimes after starting treatment with antibiotics, patients can develop watery and bloody stools (with or without stomach cramps and fever) even as late as two or more months after having taken the last dose of the antibiotic. If this occurs, patients should contact their physician as soon as possible.

DRUG INTERACTIONS


In a pharmacokinetic study, systemic exposure of tizanidine (4 mg single dose) was significantly increased (Cmax 7-fold, AUC 10-fold) when the drug was given concomitantly with ciprofloxacin (500 mg bid for 3 days). The hypotensive and sedative effects of tizanidine were also potentiated. Concomitant administration of tizanidine and ciprofloxacin is contraindicated.

As with some other quinolones, concurrent administration of ciprofloxacin with theophylline may lead to elevated serum concentrations of theophylline and prolongation of its elimination half-life. This may result in increased risk of theophylline-related adverse reactions. (See

WARNINGS

.) If concomitant use cannot be avoided, serum levels of theophylline should be monitored and dosage adjustments made as appropriate.

Some quinolones, including ciprofloxacin, have also been shown to interfere with the metabolism of caffeine. This may lead to reduced clearance of caffeine and a prolongation of its serum half-life.

Concurrent administration of a quinolone, including ciprofloxacin, with multivalent cation-containing products such as magnesium/aluminum antacids, sucralfate, Videx(didanosine) chewable/buffered tablets or pediatric powder, other highly buffered drugs, or products containing calcium, iron, or zinc may substantially decrease its absorption, resulting in serum and urine levels considerably lower than desired. (See

DOSAGE AND ADMINISTRATION

for concurrent administration of these agents with ciprofloxacin.)

Histamine H2-receptor antagonists appear to have no significant effect on the bioavailability of ciprofloxacin.

Altered serum levels of phenytoin (increased and decreased) have been reported in patients receiving concomitant ciprofloxacin.

The concomitant administration of ciprofloxacin with the sulfonylurea glyburide has, on rare occasions, resulted in severe hypoglycemia.

Some quinolones, including ciprofloxacin, have been associated with transient elevations in serum creatinine in patients receiving cyclosporine concomitantly.

Quinolones, including ciprofloxacin, have been reported to enhance the effects of the oral anticoagulant warfarin or its derivatives. When these products are administered concomitantly, prothrombin time or other suitable coagulation tests should be closely monitored.

Probenecid interferes with renal tubular secretion of ciprofloxacin and produces an increase in the level of ciprofloxacin in the serum. This should be considered if patients are receiving both drugs concomitantly.

Renal tubular transport of methotrexate may be inhibited by concomitant administration of ciprofloxacin potentially leading to increased plasma levels of methotrexate. This might increase the risk of methotrexate associated toxic reactions. Therefore, patients under methotrexate therapy should be carefully monitored when concomitant ciprofloxacin therapy is indicated.

Metoclopramide significantly accelerates the absorption of oral ciprofloxacin resulting in shorter time to reach maximum plasma concentrations. No significant effect was observed on the bioavailability of ciprofloxacin.

Non-steroidal anti-inflammatory drugs (but not acetyl salicylic acid) in combination of very high doses of quinolones have been shown to provoke convulsions in pre-clinical studies.

CARCINOGENESIS & MUTAGENESIS & IMPAIRMENT OF FERTILITY

Eight in vitro mutagenicity tests have been conducted with ciprofloxacin, and the
Salmonella/Microsome Test (Negative)

E. coli DNA Repair Assay (Negative)

Mouse Lymphoma Cell Forward Mutation Assay (Positive)

Chinese Hamster V79 Cell HGPRT Test (Negative)

Syrian Hamster Embryo Cell Transformation Assay (Negative)

Saccharomyces cerevisiae Point Mutation Assay (Negative)

Saccharomyces cerevisiae Mitotic Crossover and Gene Conversion Assay (Negative)

Rat Hepatocyte DNA Repair Assay (Positive)

Thus, 2 of the 8 tests were positive, but results of the following 3 in vivo test systems gave negative results:

Rat Hepatocyte DNA Repair Assay

Micronucleus Test (Mice)

Dominant Lethal Test (Mice)

Long-term carcinogenicity studies in rats and mice resulted in no carcinogenic or tumorigenic effects due to ciprofloxacin at daily oral dose levels up to 250 and 750 mg /kg to rats and mice, respectively (approximately 1.7- and 2.5-times the highest recommended therapeutic dose based upon mg/m2).

Results from photo co-carcinogenicity testing indicate that ciprofloxacin does not reduce the time to appearance of UV-induced skin tumors as compared to vehicle control. Hairless (Skh-1) mice were exposed to UVA light for 3.5 hours five times every two weeks for up to 78 weeks while concurrently being administered ciprofloxacin. The time to development of the first skin tumors was 50 weeks in mice treated concomitantly with UVA and ciprofloxacin (mouse dose approximately equal to maximum recommended human dose based upon mg/m2), as opposed to 34 weeks when animals were treated with both UVA and vehicle. The times to development of skin tumors ranged from 16-32 weeks in mice treated concomitantly with UVA and other quinolones.4

In this model, mice treated with ciprofloxacin alone did not develop skin or systemic tumors. There are no data from similar models using pigmented mice and/or fully haired mice. The clinical significance of these findings to humans is unknown.

Fertility studies performed in rats at oral doses of ciprofloxacin up to 100 mg/kg (approximately 0.7-times the highest recommended therapeutic dose based upon mg/m2) revealed no evidence of impairment.

PREGNANCY

Teratogenic Effects


Pregnancy Category C:

There are no adequate and well-controlled studies in pregnant women. An expert review of published data on experiences with ciprofloxacin use during pregnancy by TERIS - the Teratogen Information System - concluded that therapeutic doses during pregnancy are unlikely to pose a substantial teratogenic risk (quantity and quality of data=fair), but the data are insufficient to state that there is no risk.8

A controlled prospective observational study followed 200 women exposed to fluoroquinolones (52.5% exposed to ciprofloxacin and 68% first trimester exposures) during gestation.9 In utero exposure to fluoroquinolones during embryogenesis was not associated with increased risk of major malformations. The reported rates of major congenital malformations were 2.2% for the fluoroquinolone group and 2.6% for the control group (background incidence of major malformations is 1-5%). Rates of spontaneous abortions, prematurity and low birth weight did not differ between the groups and there were no clinically significant musculoskeletal dysfunctions up to one year of age in the ciprofloxacin exposed children.

Another prospective follow-up study reported on 549 pregnancies with fluoroquinolone exposure (93% first trimester exposures).10 There were 70 ciprofloxacin exposures, all within the first trimester. The malformation rates among live-born babies exposed to ciprofloxacin and to fluoroquinolones overall were both within background incidence ranges. No specific patterns of congenital abnormalities were found. The study did not reveal any clear adverse reactions due to in utero exposure to ciprofloxacin.

No differences in the rates of prematurity, spontaneous abortions, or birth weight were seen in women exposed to ciprofloxacin during pregnancy.8,9 However, these small post-marketing epidemiology studies, of which most experience is from short term, first trimester exposure, are insufficient to evaluate the risk for less common defects or to permit reliable and definitive conclusions regarding the safety of ciprofloxacin in pregnant women and their developing fetuses. Ciprofloxacin should not be used during pregnancy unless the potential benefit justifies the potential risk to both fetus and mother (see

WARNINGS

).

Reproduction studies have been performed in rats and mice using oral doses up to 100 mg/kg (0.6 and 0.3 times the maximum daily human dose based upon body surface area, respectively) and have revealed no evidence of harm to the fetus due to ciprofloxacin. In rabbits, oral ciprofloxacin dose levels of 30 and 100 mg/kg (approximately 0.4- and 1.3-times the highest recommended therapeutic dose based upon mg/m2) produced gastrointestinal toxicity resulting in maternal weight loss and an increased incidence of abortion, but no teratogenicity was observed at either dose level. After intravenous administration of doses up to 20 mg/kg (approximately 0.3-times the highest recommended therapeutic dose based upon mg/m2) no maternal toxicity was produced and no embryotoxicity or teratogenicity was observed. (See

WARNINGS

.)

NURSING MOTHERS

Ciprofloxacin is excreted in human milk. The amount of ciprofloxacin absorbed by the nursing infant is unknown. Because of the potential for serious adverse reactions in infants nursing from mothers taking ciprofloxacin, a decision should be made whether to discontinue nursing or to discontinue the drug, taking into account the importance of the drug to the mother.

PEDIATRIC USE

Ciprofloxacin, like other quinolones, causes arthropathy and histological changes in weight-bearing joints of juvenile animals resulting in lameness. (See

ANIMAL PHARMACOLOGY

.)

Inhalational Anthrax (Post-Exposure)


Ciprofloxacin is indicated in pediatric patients for inhalational anthrax (post-exposure). The risk-benefit assessment indicates that administration of ciprofloxacin to pediatric patients is appropriate. For information regarding pediatric dosing in inhalational anthrax (post-exposure), see

DOSAGE AND ADMINISTRATION

and

INHALATIONAL ANTHRAXADDITIONAL INFORMATION

.

Complicated Urinary Tract Infection and Pyelonephritis

Ciprofloxacin is indicated for the treatment of complicated urinary tract infections and pyelonephritis due to Escherichia coli. Although effective in clinical trials, ciprofloxacin is not a drug of first choice in the pediatric population due to an increased incidence of adverse events compared to the controls, including events related to joints and/or surrounding tissues. The rates of these events in pediatric patients with complicated urinary tract infection and pyelonephritis within six weeks of follow-up were 9.3% (31/335) versus 6% (21/349) for control agents. The rates of these events occurring at any time up to the one year follow-up were 13.7% (46/335) and 9.5% (33/349), respectively. The rate of all adverse events regardless of drug relationship at six weeks was 41% (138/335) in the ciprofloxacin arm compared to 31% (109/349) in the control arm. (See

ADVERSE REACTIONS

and

CLINICAL STUDIES

.)

Cystic Fibrosis


Short-term safety data from a single trial in pediatric cystic fibrosis patients are available. In a randomized, double-blind clinical trial for the treatment of acute pulmonary exacerbations in cystic fibrosis patients (ages 5-17 years), 67 patients received ciprofloxacin I.V. 10 mg/kg/dose q8h for one week followed by ciprofloxacin tablets 20 mg/kg/dose q12h to complete 10-21 days treatment and 62 patients received the combination of ceftazidime I.V. 50 mg/kg/dose q8h and tobramycin I.V. 3 mg/kg/dose q8h for a total of 10-21 days. Patients less than 5 years of age were not studied. Safety monitoring in the study included periodic range of motion examinations and gait assessments by treatment-blinded examiners. Patients were followed for an average of 23 days after completing treatment (range 0-93 days). This study was not designed to determine long term effects and the safety of repeated exposure to ciprofloxacin. Musculoskeletal adverse events in patients with cystic fibrosis were reported in 22% of the patients in the ciprofloxacin group and 21% in the comparison group. Decreased range of motion was reported in 12% of the subjects in the ciprofloxacin group and 16% in the comparison group. Arthralgia was reported in 10% of the patients in the ciprofloxacin group and 11% in the comparison group. Other adverse events were similar in nature and frequency between treatment arms. One of sixty-seven patients developed arthritis of the knee nine days after a ten day course of treatment with ciprofloxacin. Clinical symptoms resolved, but an MRI showed knee effusion without other abnormalities eight months after treatment. However, the relationship of this event to the patient's course of ciprofloxacin can not be definitively determined, particularly since patients with cystic fibrosis may develop arthralgias/arthritis as part of their underlying disease process.

GERIATRIC USE

BOXED WARNING

,

WARNINGS

, and

ADVERSE REACTIONS/Post-Marketing Adverse Event Reports

).

In a retrospective analysis of 23 multiple-dose controlled clinical trials of ciprofloxacin encompassing over 3500 ciprofloxacin treated patients, 25% of patients were greater than or equal to 65 years of age and 10% were greater than or equal to 75 years of age. No overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients, but greater sensitivity of some older individuals on any drug therapy cannot be ruled out. Ciprofloxacin is known to be substantially excreted by the kidney, and the risk of adverse reactions may be greater in patients with impaired renal function. No alteration of dosage is necessary for patients greater than 65 years of age with normal renal function. However, since some older individuals experience reduced renal function by virtue of their advanced age, care should be taken in dose selection for elderly patients, and renal function monitoring may be useful in these patients. (See

CLINICAL PHARMACOLOGY

and

DOSAGE AND ADMINISTRATION

.)

In general, elderly patients may be more susceptible to drug-associated effects on the QT interval. Therefore, precaution should be taken when using Ciprofloxacin Tablets USP 250 mg, 500 mg and 750 mg with concomitant drugs that can result in prolongation of the QT interval (e.g., class IA or class III antiarrhythmics) or in patients with risk factors for torsade de pointes (e.g., known QT prolongation, uncorrected hypokalemia).

ADVERSE REACTIONS

Adverse Reactions in Adult Patients:


During clinical investigations with oral and parenteral ciprofloxacin, 49,038 patients received courses of the drug. Most of the adverse events reported were described as only mild or moderate in severity, abated soon after the drug was discontinued, and required no treatment. Ciprofloxacin was discontinued because of an adverse event in 1% of orally treated patients.

The most frequently reported drug related events, from clinical trials of all formulations, all dosages, all drug-therapy durations, and for all indications of ciprofloxacin therapy were nausea (2.5%), diarrhea (1.6%), liver function tests abnormal (1.3%), vomiting (1%), and rash (1%).

Additional medically important events that occurred in less than 1% of ciprofloxacin patients are listed below.

BODY AS A WHOLE: headache, abdominal pain/discomfort, foot pain, pain, pain in extremities, injection site reaction (ciprofloxacin intravenous)

CARDIOVASCULAR: palpitation, atrial flutter, ventricular ectopy, syncope, hypertension, angina pectoris, myocardial infarction, cardiopulmonary arrest, cerebral thrombosis, phlebitis, tachycardia, migraine, hypotension

CENTRAL NERVOUS SYSTEM: restlessness, dizziness, lightheadedness, insomnia, nightmares, hallucinations, manic reaction, irritability, tremor, ataxia, convulsive seizures, lethargy, drowsiness, weakness, malaise, anorexia, phobia, depersonalization, depression, paresthesia, abnormal gait, grand mal convulsion

GASTROINTESTINAL: painful oral mucosa, oral candidiasis, dysphagia, intestinal perforation, gastrointestinal bleeding, cholestatic jaundice, hepatitis

HEMIC/LYMPHATIC: lymphadenopathy, petechia

METABOLIC/NUTRITIONAL: amylase increase, lipase increase

MUSCULOSKELETAL: arthralgia or back pain, joint stiffness, achiness, neck or chest pain, flare up of gout

RENAL/UROGENITAL: interstitial nephritis, nephritis, renal failure, polyuria, urinary retention, urethral bleeding, vaginitis, acidosis, breast pain

RESPIRATORY: dyspnea, epistaxis, laryngeal or pulmonary edema, hiccough, hemoptysis, bronchospasm, pulmonary embolism

SKIN/HYPERSENSITIVITY: allergic reaction, pruritus, urticaria, photosensitivity/phototoxicity reaction, flushing, fever, chills, angioedema, edema of the face, neck, lips, conjunctivae or hands, cutaneous candidiasis, hyperpigmentation, erythema nodosum, sweating

SPECIAL SENSES: blurred vision, disturbed vision (change in color perception, overbrightness of lights), decreased visual acuity, diplopia, eye pain, tinnitus, hearing loss, bad taste, chromatopsia

In several instances nausea, vomiting, tremor, irritability, or palpitation were judged by investigators to be related to elevated serum levels of theophylline possibly as a result of drug interaction with ciprofloxacin.

In randomized, double-blind controlled clinical trials comparing ciprofloxacin tablets (500 mg BID) to cefuroxime axetil (250 mg-500 mg BID) and to clarithromycin (500 mg BID) in patients with respiratory tract infections, ciprofloxacin demonstrated a CNS adverse event profile comparable to the control drugs.

Adverse Reactions in Pediatric Patients:

Ciprofloxacin, administered I.V. and /or orally, was compared to a cephalosporin for treatment of complicated urinary tract infections (cUTI) or pyelonephritis in pediatric patients 1 to 17 years of age (mean age of 64 years). The trial was conducted in the US, Canada, Argentina, Peru, Costa Rica, Mexico, South Africa, and Germany. The duration of therapy was 10 to 21 days (mean duration of treatment was 11 days with a range of 1 to 88 days). The primary objective of the study was to assess musculoskeletal and neurological safety within 6 weeks of therapy and through one year of follow-up in the 335 ciprofloxacin- and 349 comparator-treated patients enrolled.

An Independent Pediatric Safety Committee (IPSC) reviewed all cases of musculoskeletal adverse events as well as all patients with an abnormal gait or abnormal joint exam (baseline or treatment-emergent). These events were evaluated in a comprehensive fashion and included such conditions as arthralgia, abnormal gait, abnormal joint exam, joint sprains, leg pain, back pain, arthrosis, bone pain, pain, myalgia, arm pain, and decreased range of motion in a joint. The affected joints included: knee, elbow, ankle, hip, wrist, and shoulder. Within 6 weeks of treatment initiation, the rates of these events were 9.3% (31/335) in the ciprofloxacin-treated group versus 6% (21/349) in comparator-treated patients. The majority of these events were mild or moderate in intensity. All musculoskeletal events occurring by 6 weeks resolved (clinical resolution of signs and symptoms), usually within 30 days of end of treatment. Radiological evaluations were not routinely used to confirm resolution of the events. The events occurred more frequently in ciprofloxacin-treated patients than control patients, regardless of whether they received I.V. or oral therapy. Ciprofloxacin-treated patients were more likely to report more than one event and on more than one occasion compared to control patients. These events occurred in all age groups and the rates were consistently higher in the ciprofloxacin group compared to the control group. At the end of 1 year, the rate of these events reported at any time during that period was 13.7% (46/335) in the ciprofloxacin-treated group versus 9.5% (33/349) comparator-treated patients.

An adolescent female discontinued ciprofloxacin for wrist pain that developed during treatment. An MRI performed 4 weeks later showed a tear in the right ulnar fibrocartilage. A diagnosis of overuse syndrome secondary to sports activity was made, but a contribution from ciprofloxacin cannot be excluded. The patient recovered by 4 months without surgical intervention.

Findings Involving Joint or Peri-articular Tissues as Assessed by the IPSC

CiprofloxacinComparator

*The study was designed to demonstrate that the arthropathy rate for the ciprofloxacin group did not exceed that of the control group by more than + 6%. At both the 6 week and 1 year evaluations, the 95% confidence interval indicated that it could not be concluded that ciprofloxacin group had findings comparable to the control group.All Patients (within 6 weeks)31/335 (9.3%)21/349 (6%)95% Confidence Interval*(-0.8%, +7.2%)Age Group12 months < 24 months1/36 (2.8%)0/412 years < 6 years5/124 (4%)3/118 (2.5%)6 years < 12 years18/143 (12.6%)12/153 (7.8%)12 years to 17 years7/32 (21.9%)6/37 (16.2 %)All Patients (within 1 year)46/335 (13.7%)33/349 (9.5%)95% Confidence Interval*(-0.6%, + 9.1%)

The incidence rates of neurological events within 6 weeks of treatment initiation were 3% (9/335) in the ciprofloxacin group versus 2% (7/349) in the comparator group and included dizziness, nervousness, insomnia, and somnolence.

In this trial, the overall incidence rates of adverse events regardless of relationship to study drug and within 6 weeks of treatment initiation were 41% (138/335) in the ciprofloxacin group versus 31% (109/349) in the comparator group. The most frequent events were gastrointestinal: 15% (50/335) of ciprofloxacin patients compared to 9% (31/349) of comparator patients. Serious adverse events were seen in 7.5% (25/335) of ciprofloxacin-treated patients compared to 5.7% (20/349) of control patients. Discontinuation of drug due to an adverse event was observed in 3% (10/335) of ciprofloxacin-treated patients versus 1.4% (5/349) of comparator patients. Other adverse events that occurred in at least 1% of ciprofloxacin patients were diarrhea 4.8%, vomiting 4.8%, abdominal pain 3.3%, accidental injury 3%, rhinitis 3%, dyspepsia 2.7%, nausea 2.7%, fever 2.1%, asthma 1.8% and rash 1.8%.

In addition to the events reported in pediatric patients in clinical trials, it should be expected that events reported in adults during clinical trials or post-marketing experience may also occur in pediatric patients.

Post-Marketing Adverse Event Reports:

The following adverse events have been reported from worldwide marketing experience with quinolones, including ciprofloxacin. Because these events are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Decisions to include these events in labeling are typically based on one or more of the following factors: (1) seriousness of the event, (2) frequency of the reporting, or (3) strength of causal connection to the drug.

Agitation, agranulocytosis, albuminuria, anaphylactic reactions (including life-threatening anaphylactic shock), anosmia, candiduria, cholesterol elevation (serum), confusion, constipation, delirium, dyspepsia, dysphagia, erythema multiforme, exfoliative dermatitis, fixed eruption, flatulence, glucose elevation (blood), hemolytic anemia, hepatic failure (including fatal cases), hepatic necrosis, hyperesthesia, hypertonia, hypesthesia, hypotension (postural), jaundice, marrow depression (life threatening), methemoglobinemia, moniliasis (oral, gastrointestinal, vaginal), myalgia, myasthenia, myasthenia gravis (possible exacerbation), myoclonus, nystagmus, pancreatitis, pancytopenia (life threatening or fatal outcome), peripheral neuropathy, phenytoin alteration (serum), photosensitivity/phototoxicity reaction, potassium elevation (serum), prothrombin time prolongation or decrease, pseudomembranous colitis (The onset of pseudomembranous colitis symptoms may occur during or after antimicrobial treatment.), psychosis (toxic), renal calculi, serum sickness like reaction, Stevens-Johnson syndrome, taste loss, tendinitis, tendon rupture, torsade de pointes, toxic epidermal necrolysis (Lyell's Syndrome), triglyceride elevation (serum), twitching, vaginal candidiasis, and vasculitis. (See

PRECAUTIONS

.)

Adverse events were also reported by persons who received ciprofloxacin for anthrax post-exposure prophylaxis following the anthrax bioterror attacks of October 2001. (See also

INHALATIONAL ANTHRAXADDITIONAL INFORMATION

.)

Adverse Laboratory Changes:


Changes in laboratory parameters listed as adverse events without regard to drug relationship are listed below:

HepaticElevations of ALT (SGPT) (1.9%), AST (SGOT) (1.7%), alkaline phosphatase (0.8%), LDH (0.4%), serum bilirubin (0.3%).

HematologicEosinophilia (0.6%), leukopenia (0.4%), decreased blood platelets (0.1%), elevated blood platelets (0.1%), pancytopenia (0.1%).

RenalElevations of serum creatinine (1.1%), BUN (0.9%), CRYSTALLURIA, CYLINDRURIA, AND HEMATURIA HAVE BEEN REPORTED.

Other changes occurring in less than 0.1% of courses were: elevation of serum gammaglutamyl transferase, elevation of serum amylase, reduction in blood glucose, elevated uric acid, decrease in hemoglobin, anemia, bleeding diathesis, increase in blood monocytes, leukocytosis.

OVERDOSAGE

In the event of acute overdosage, reversible renal toxicity has been reported in some cases. The stomach should be emptied by inducing vomiting or by gastric lavage. The patient should be carefully observed and given supportive treatment, including monitoring of renal function and administration of magnesium, aluminum, or calcium containing antacids which can reduce the absorption of ciprofloxacin. Adequate hydration must be maintained. Only a small amount of ciprofloxacin (< 10%) is removed from the body after hemodialysis or peritoneal dialysis.

In mice, rats, rabbits and dogs, significant toxicity including tonic/clonic convulsions was observed at intravenous doses of ciprofloxacin between 125 and 300 mg/kg.

DOSAGE & ADMINISTRATION

ADULTS


Ciprofloxacin Tablets USP 250 mg, 500 mg and 750 mg should be administered orally to adults as described in the Dosage Guidelines table.

The determination of dosage for any particular patient must take into consideration the severity and nature of the infection, the susceptibility of the causative organism, the integrity of the patient's host-defense mechanisms, and the status of renal function and hepatic function.

(didanosine) chewable/buffered tablets or pediatric powder for oral solution, other highly buffered drugs, or other products containing calcium, iron or zinc.

ADULT DOSAGE GUIDELINES

InfectionSeverityDoseFrequencyUsual Durations

* used in conjunction with metronidazoleGenerally ciprofloxacin should be continued for at least 2 days after the signs and symptoms of infection have disappeared, except for inhalational anthrax (post-exposure). ** Drug administration should begin as soon as possible after suspected or confirmed exposure. This indication is based on a surrogate endpoint, ciprofloxacin serum concentrations achieved in humans, reasonably likely to predict clinical benefit.4 For a discussion of ciprofloxacin serum concentrations in various human populations, see

INHALATIONAL ANTHRAXADDITIONAL INFORMATION

.Urinary TractAcute Uncomplicated250 mgq 12 h3 DaysMild/Moderate250 mgq 12 h7 to 14 DaysSevere/Complicated500 mgq 12 h7 to 14 DaysChronic Bacterial ProstatitsMild/Moderate500 mgq 12 h28 DaysLower Respiratory TractMild/Moderate500 mgq 12 h7 to 14 daysSevere/Complicated750 mgq 12 h7 to 14 daysAcute SinusitisMild/Moderate500 mgq 12 h10 daysSkin and Skin StructureMild/Moderate500 mgq 12 h7 to 14 DaysSevere/Complicated750 mgq 12 h7 to 14 DaysBone and JointMild/Moderate500 mgq 12 hto 6 weeksSevere/Complicated750 mgq 12 hto 6 weeksIntra-Abdominal*Complicated500 mgq 12 h7 to 14 DaysInfectious DiarrheaMild/Moderate/Severe500 mgq 12 h5 to 7 DaysTyphoid FeverMild/Moderate500 mgq 12 h10 DaysUrethral and Cervical Gonococcal InfectionsUncomplicated250 mgsingle dosesingle doseInhalational anthrax (post-exposure)**500 mgq 12 h60 Days

Conversion of I.V. to Oral Dosing in Adults:


Patients whose therapy is started with CIPRO I.V. may be switched to Ciprofloxacin Tablets USP 250 mg, 500 mg and 750 mg when clinically indicated at the discretion of the physician (See

CLINICAL PHARMACOLOGY

and table below for the equivalent dosing regimens).

Equivalent AUC Dosing Regimens

Cipro Oral DosageEquivalent Cipro I.V. Dosage

250 mg Tablet q 12 h200 mg I.V. q 12 h500 mg Tablet q 12 h400 mg I.V. q 12 h750 mg Tablet q 12 h400 mg I.V. q 8 h

Adults with Impaired Renal Function:


RECOMMENDED STARTING AND MAINTENANCE DOSES FOR PATIENTS WITH IMPAIRED RENAL FUNCTION

Creatinine Clearance (mL/min)Dose

> 50See Usual Dosage.30-50250-500 mg q 12 h5-29250-500 mg q 18 hPatients on hemodialysis or Peritoneal dialysis250-500 mg q 24 h (after dialysis)

When only the serum creatinine concentration is known, the following formula may be used to estimate creatinine clearance.

Weight (kg) x (140 - age)

Men: Creatinine clearance (mL/min) = 72 x serum creatinine (mg/dL)

Women: 0.85 x the value calculated for men.

The serum creatinine should represent a steady state of renal function.

In patients with severe infections and severe renal impairment, a unit dose of 750 mg may be administered at the intervals noted above. Patients should be carefully monitored.

DOSAGE AND ADMINISTRATION - PEDIATRICS

Ciprofloxacin Tablets USP 250 mg, 500 mg and 750 mg should be administered orally as described in the Dosage Guidelines table. An increased incidence of adverse events compared to controls, including events related to joints and/or surrounding tissues, has been observed. (See

ADVERSE REACTIONS

and

CLINICAL STUDIES

.)

Dosing and initial route of therapy (i.e., I.V. or oral) for complicated urinary tract infection or pyelonephritis should be determined by the severity of the infection. In the clinical trial, pediatric patients with moderate to severe infection were initiated on 6 to 10 mg/kg I.V. every 8 hours and allowed to switch to oral therapy (10 to 20 mg/kg every 12 hours), at the discretion of the physician.

PEDIATRIC DOSAGE GUIDELINES

InfectionRoute of AdministrationDose (mg/kg)FrequencyTotal Duration

* The total duration of therapy for complicated urinary tract infection and pyelonephritis in the clinical trial was determined by the physician. The mean duration of treatment was 11 days (range 10 to 21 days). ** Drug administration should begin as soon as possible after suspected or confirmed exposure to Bacillus anthracis spores. This indication is based on a surrogate endpoint, ciprofloxacin serum concentrations achieved in humans, reasonably likely to predict clinical benefit.5 For a discussion of ciprofloxacin serum concentrations in various human populations, see

INHALATIONAL ANTHRAXADDITIONAL INFORMATION

.Complicated Urinary Tract or PyelonephritisIntravenousEvery 8 hours10-21 days*(patients from 1 to 17 years of age)OralEvery 12 hoursInhalational Anthrax (Post-Exposure)**Intravenous10 mg/kg (maximum 400 mg per dose)Every 12 hours60 daysOral15 mg/kg (maximum 500 mg per dose)Every 12 hours

Pediatric patients with moderate to severe renal insufficiency were excluded from the clinical trial of complicated urinary tract infection and pyelonephritis. No information is available on dosing adjustments necessary for pediatric patients with moderate to severe renal insufficiency (i.e., creatinine clearance of < 50 mL/min/1.73m2).

HOW SUPPLIED

Ciprofloxacin Tablets are available as round biconvex white to slightly yellowish film coated tablets containing 250 mg of ciprofloxacin. The 250 mg tablet is embossed with the word "P" on one side and "250" on reverse side. The 500 mg and 750 mg tablet are available as capsule shaped, white to slightly yellowish film coated tablets with the word "P" embossed on one side and "500" or "750" on reverse side, respectively.

StrengthNDC CodeTablet Identification

Bottles of 50:250 mg 500 mg 750 mgNDC 16571-411-05 NDC 16571-412-05 NDC 16571-413-05P 250 P 500 P 750Bottles of 100:250 mg 500 mg 750 mgNDC 16571-411-10 NDC 16571-412-10 NDC 16571-413-10P 250 P 500 P 750Bottles of 500:250 mg 500 mg 750 mgNDC 16571-411-50 NDC 16571-412-50 NDC 16571-413-50P 250 P 500 P 750

STORAGE AND HANDLING

Store below 30(86

ANIMAL PHARMACOLOGY & OR TOXICOLOGY


Ciprofloxacin and other quinolones have been shown to cause arthropathy in immature animals of most species tested. (See

WARNINGS

.) Damage of weight bearing joints was observed in juvenile dogs and rats. In young beagles, 100 mg/kg ciprofloxacin, given daily for 4 weeks, caused degenerative articular changes of the knee joint. At 30 mg/kg, the effect on the joint was minimal. In a subsequent study in young beagle dogs, oral ciprofloxacin doses of 30 mg/kg and 90 mg/kg ciprofloxacin (approximately 1.3- and 3.5-times the pediatric dose based upon comparative plasma AUCs) given daily for 2 weeks caused articular changes which were still observed by histopathology after a treatment-free period of 5 months. At 10 mg/kg (approximately 0.6-times the pediatric dose based upon comparative plasma AUCs), no effects on joints were observed. This dose was also not associated with arthrotoxicity after an additional treatment-free period of 5 months. In another study, removal of weight bearing from the joint reduced the lesions but did not totally prevent them.

In dogs, ciprofloxacin at 3 and 10 mg/kg by rapid I.V. injection (15 sec.) produces pronounced hypotensive effects. These effects are considered to be related to histamine release, since they are partially antagonized by pyrilamine, an antihistamine. In rhesus monkeys, rapid I.V. injection also produces hypotension but the effect in this species is inconsistent and less pronounced.

In mice, concomitant administration of nonsteroidal anti-inflammatory drugs such as phenylbutazone and indomethacin with quinolones has been reported to enhance the CNS stimulatory effect of quinolones.

Ocular toxicity seen with some related drugs has not been observed in ciprofloxacin-treated animals.

CLINICAL STUDIES

Complicated Urinary Tract Infection and PyelonephritisEfficacy in Pediatric Patients:


NOTE: Although effective in clinical trials, ciprofloxacin is not a drug of first choice in the pediatric population due to an increased incidence of adverse events compared to controls, including events related to joints and/or surrounding tissues.

Ciprofloxacin, administered I.V. and/or orally, was compared to a cephalosporin for treatment of complicated urinary tract infections (cUTI) and pyelonephritis in pediatric patients 1 to 17 years of age (mean age of 64 years). The trial was conducted in the US, Canada, Argentina, Peru, Costa Rica, Mexico, South Africa, and Germany. The duration of therapy was 10 to 21 days (mean duration of treatment was 11 days with a range of 1 to 88 days). The primary objective of the study was to assess musculoskeletal and neurological safety.

Patients were evaluated for clinical success and bacteriological eradication of the baseline organism(s) with no new infection or superinfection at 5 to 9 days post-therapy (Test of Cure or TOC). The Per Protocol population had a causative organism(s) with protocol specified colony count(s) at baseline, no protocol violation, and no premature discontinuation or loss to follow-up (among other criteria).

The clinical success and bacteriologic eradication rates in the Per Protocol population were similar between ciprofloxacin and the comparator group as shown below.

Clinical Success and Bacteriologic Eradication at Test of Cure (5 to 9 Days Post-Therapy)

CiprofloxacinComparator

* Patients with baseline pathogen(s) eradicated and no new infections or superinfections/total number of patients. There were 5.5% (6/211) ciprofloxacin and 9.5% (22/231) comparator patients with superinfections or new infections.Randomized Patients337352Per Protocol Patients211231Clinical Response at 5 to 9 Days Post-Treatment95.7% (202/211)92.6% (214/231)95% CI [-1.3%, 7.3%]Bacteriologic Eradication by Patient at 5 to 9 Days Post-Treatment*84.4% (178/211)78.3% (181/231)95% CI [-1.3%, 13.1%]Bacteriologic Eradication of the Baseline Pathogen at 5 to 9 Days Post-TreatmentEscherichia coli156/178 (88%)161/179 (90%)

INHALATIONAL ANTHRAX IN ADULTS AND PEDIATRICSADDITIONAL INFORMATION

The mean serum concentrations of ciprofloxacin associated with a statistically significant improvement in survival in the rhesus monkey model of inhalational anthrax are reached or exceeded in adult and pediatric patients receiving oral and intravenous regimens. (See

DOSAGE AND ADMINISTRATION

.) Ciprofloxacin pharmacokinetics have been evaluated in various human populations. The mean peak serum concentration achieved at steady-state in human adults receiving 500 mg orally every 12 hours is 2.97and 4.56following 400 mg intravenously every 12 hours. The mean trough serum concentration at steady-state for both of these regimens is 0.2In a study of 10 pediatric patients between 6 and 16 years of age, the mean peak plasma concentration achieved is 8.3and trough concentrations range from 0.09 to 0.26following two 30-minute intravenous infusions of 10 mg/kg administered 12 hours apart. After the second intravenous infusion patients switched to 15 mg/kg orally every 12 hours achieve a mean peak concentration of 3.6after the initial oral dose. Long-term safety data, including effects on cartilage, following the administration of ciprofloxacin to pediatric patients are limited. (For additional information, see

PRECAUTIONS, Pediatric Use

.) Ciprofloxacin serum concentrations achieved in humans serve as a surrogate endpoint reasonably likely to predict clinical benefit and provide the basis for this indication.5

A placebo-controlled animal study in rhesus monkeys exposed to an inhaled mean dose of 11 LD50 (~5.5 x 105 spores (range 5-30 LD50) of B. anthracis was conducted. The minimal inhibitory concentration (MIC) of ciprofloxacin for the anthrax strain used in this study was 0.08In the animals studied, mean serum concentrations of ciprofloxacin achieved at expected Tmax (1 hour post-dose) following oral dosing to steady-state ranged from 0.98 to 1.69Mean steady-state trough concentrations at 12 hours post-dose ranged from 0.12 to 0.19Mortality due to anthrax for animals that received a 30-day regimen of oral ciprofloxacin beginning 24 hours post-exposure was significantly lower (1/9), compared to the placebo group (9/10) [p=0.001]. The one ciprofloxacin-treated animal that died of anthrax did so following the 30-day drug administration period.7

More than 9300 persons were recommended to complete a minimum of 60 days of antibiotic prophylaxis against possible inhalational exposure to B. anthracis during 2001. Ciprofloxacin was recommended to most of those individuals for all or part of the prophylaxis regimen. Some persons were also given anthrax vaccine or were switched to alternative antibiotics. No one who received ciprofloxacin or other therapies as prophylactic treatment subsequently developed inhalational anthrax. The number of persons who received ciprofloxacin as all or part of their post-exposure prophylaxis regimen is unknown.

Among the persons surveyed by the Centers for Disease Control and Prevention, over 1000 reported receiving ciprofloxacin as sole post-exposure prophylaxis for inhalational anthrax. Gastrointestinal adverse events (nausea, vomiting, diarrhea, or stomach pain), neurological adverse events (problems sleeping, nightmares, headache, dizziness or lightheadedness) and musculoskeletal adverse events (muscle or tendon pain and joint swelling or pain) were more frequent than had been previously reported in controlled clinical trials. This higher incidence, in the absence of a control group, could be explained by a reporting bias, concurrent medical conditions, other concomitant medications, emotional stress or other confounding factors, and/or a longer treatment period with ciprofloxacin. Because of these factors and limitations in the data collection, it is difficult to evaluate whether the reported symptoms were drug-related.

REFERENCES

1. National Committee for Clinical Laboratory Standards, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically-Fifth Edition. Approved Standard NCCLS Document M7-A5, Vol. 20, No. 2, NCCLS, Wayne, PA, January, 2000.

2. Clinical and Laboratory Standards Institute, Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline., CLSI Document M45-A, Vol. 26, No. 19, CLSI, Wayne, PA, 2006.

3. National Committee for Clinical Laboratory Standards, Performance Standards for Antimicrobial Disk Susceptibility Tests-Seventh Edition. Approved Standard NCCLS Document M2-A7, Vol. 20, No. 1, NCCLS, Wayne, PA, January, 2000.

4. Report presented at the FDA's Anti-Infective Drug and Dermatological Drug Product's Advisory Committee meeting, March 31, 1993, Silver Spring, MD. Report available from FDA, CDER, Advisors and Consultants Staff, HFD-21, 1901 Chapman Avenue, Room 200, Rockville, MD 20852, USA.

5. 21 CFR 314.510 (Subpart HAccelerated Approval of New Drugs for Life-Threatening Illnesses).

6. Kelly DJ, et al. Serum concentrations of penicillin, doxycycline, and ciprofloxacin during prolonged therapy in rhesus monkeys. J Infect Dis 1992; 166:1184-7.

7. Friedlander AM, et al. Postexposure prophylaxis against experimental inhalational anthrax. J Infect Dis 1993; 167:1239-42.

8. Friedman J, Polifka J. Teratogenic effects of drugs: a resource for clinicians (TERIS). Baltimore, Maryland: Johns Hopkins University Press, 2000:149-195.

9. Loebstein R, Addis A, Ho E, et al. Pregnancy outcome following gestational exposure to fluoroquinolones: a multicenter prospective controlled study. Antimicrob Agents Chemother. 1998;42(6):1336-1339.

10. Schaefer C, Amoura-Elefant E, Vial T, et al. Pregnancy outcome after prenatal quinolone exposure. Evaluation of a case registry of the European network of teratology information services (ENTIS). Eur J Obstet Gynecol Reprod Biol. 1996;69:83-89.

SPL MEDGUIDE

PACKAGE LABEL.PRINCIPAL DISPLAY PANEL SECTION

DRUG: Ciprofloxacin Hydrochloride

GENERIC: Ciprofloxacin Hydrochloride

DOSAGE: TABLET

ADMINSTRATION: ORAL

NDC: 49349-854-01

STRENGTH:500 mg

COLOR: white

SHAPE: BULLET

SCORE: No score

SIZE: 18 mm

IMPRINT: 1

QTY: 1

MM3

CIPROFLOXACIN HYDROCHLORIDE 
ciprofloxacin hydrochloride tablet
Product Information
Product TypeHUMAN PRESCRIPTION DRUGItem Code (Source)NDC:49349-854
Route of AdministrationORAL
Active Ingredient/Active Moiety
Ingredient NameBasis of StrengthStrength
CIPROFLOXACIN HYDROCHLORIDE (UNII: 4BA73M5E37) (CIPROFLOXACIN - UNII:5E8K9I0O4U) CIPROFLOXACIN500 mg
Inactive Ingredients
Ingredient NameStrength
STARCH, CORN (UNII: O8232NY3SJ)  
CELLULOSE, MICROCRYSTALLINE (UNII: OP1R32D61U)  
SILICON DIOXIDE (UNII: ETJ7Z6XBU4)  
CROSPOVIDONE (UNII: 68401960MK)  
MAGNESIUM STEARATE (UNII: 70097M6I30)  
HYPROMELLOSES (UNII: 3NXW29V3WO)  
TITANIUM DIOXIDE (UNII: 15FIX9V2JP)  
POLYETHYLENE GLYCOL (UNII: 3WJQ0SDW1A)  
WATER (UNII: 059QF0KO0R)  
Product Characteristics
ColorwhiteScoreno score
ShapeBULLET (TABLET) Size18mm
FlavorImprint Code P;500
Contains    
Packaging
#Item CodePackage DescriptionMarketing Start DateMarketing End Date
1NDC:49349-854-011 in 1 VIAL; Type 0: Not a Combination Product12/12/201204/18/2016
Marketing Information
Marketing CategoryApplication Number or Monograph CitationMarketing Start DateMarketing End Date
ANDAANDA07663912/12/201204/18/2016
Labeler - REMEDYREPACK INC. (829572556)

Revised: 10/2016
 
REMEDYREPACK INC.